
 

Eleventh International Congress of the Brazilian Geophysical Society 

 
Power-gradient velocity model 

Alexey Stovas, NTNU, Trondheim, Norway 
 
Copyright 2009, SBGf - Sociedade Brasileira de Geofísica 

This paper was prepared for presentation during the 11th International Congress of the 
Brazilian Geophysical Society held in Salvador, Brazil, August 24-28, 2009. 

Contents of this paper were reviewed by the Technical Committee of the 11th 
International Congress of the Brazilian Geophysical Society and do not necessarily 
represent any position of the SBGf, its officers or members. Electronic reproduction or 
storage of any part of this paper for commercial purposes without the written consent 
of the Brazilian Geophysical Society is prohibited. 
____________________________________________________________________  

Abstract 
I propose a power-gradient velocity model which 
incorporates several well-known velocity models as 
special cases. The proposed velocity model covers wide 
range of possible velocity distributions and has four 
parameters, which gives more flexibility in velocity-model 
manipulation. For the proposed non-linear velocity model, 
I compute the kinematical characteristics: offset-traveltime 
parameteric equations, traveltime parameters, relative 
geometrical spreading and the phase of the propagator. 
The kinematical characteristics are investigated with 
respect to a parameter responsible for non-linearity of 
velocity distribution. The inversion of traveltime 
parameters is discussed in three- and four-parameter 
framework. 

Introduction 
The velocity model is very important for both seismic 
modeling and inversion. In order to invert the kinematic 
parameters obtained in velocity analysis into model 
parameters, the model has to be properly defined. The 
uncertainty in the velocity model is very important for 
inversion, interpretation (Hajnal and Sereda, 1981; Bickel, 
1990; Lines, 1993;  Al-Chalabi, 1997; Kosloff and 
Sudman, 2001) and imaging (Fomel and Landa, 2005). 
There are many different velocity models which are used 
in seismic processing and interpretation in order to fulfill 
the inversion from reflection traveltimes, to test different 
seismic processing techniques and so on. It is very 
common to imply the models with velocity varying with 
depth only. The simplest velocity model is the one with 
constant velocity. The inversion of traveltime-parameters 
within the framework of this model is given by very simple 
Dix equations. If the velocity is varying with depth, the 
inversion requires more complicated techniques. 
The most frequently applied vertically heterogeneous 
velocity models are: the linear velocity model and the 
linear sloth model. 
In this paper I present the power-gradient velocity model 
which is a four-parameter model and incorporates several 
well-known velocity models as the special cases. When 
reduced to three-parameter model, the power-gradient 
velocity model results in the series of the kinematically 
equivalent velocity models (Stovas, 2007). To analyze the 
kinematic characteristics of the power-gradient velocity 
model, I choose the parameter that controls the curvature 
of the velocity function. For given values of this 

parameter, the power-gradient velocity model is reduced 
to the well-known velocity models. 
I show that the non-hyperbolicity of the reflection curve is 
offset-dependent and illustrate the accuracy of all known 
traveltime approximations. The geometrical spreading 
and the phase factor from the propagator can be given in 
terms of traveltime parameters. 
The four-parameter inversion from the power-gradient 
model shows the uncertainties from the inversion of 
traveltime parameters into the model parameters. 

Definition 
I introduce a four-parameter non-linear velocity model by  
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where H  is layer thickness,  is velocity to the top of 

the layer, the velocity ratio parameter 

0v
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n∈R  is the parameter controlling the curvature of 
velocity distribution. It is convenient to introduce the 
function 
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For 0n =  ( )0 lnγ γΦ = . 

To illustrate the family of velocity models I choose layer 
thickness 1H km= , velocity to the top 0 2v km s=  

and velocity ratio parameter 1.5γ =
2, 4,

. The parameter  

is taking the values: 0,
n

1, 8± ± ± ± . With respect 

to the function ( )v z  it means that I fix the depth interval, 

the points of ( )v z  at  and 0z = z H= , and 

manipulate with parameter  only. I shall name these 

models 

n
nM . The velocity distributions for these models 

are illustrated in Figure 1. It is clear that parameter  
controls the curvature of the velocity distribution. With 

, the velocity function is concave, and if 

n

1n > 1n < , the 
velocity function is convex. 
This model reduces to well-known velocity models for 
some specific values of the parameter . With 

, it is constant velocity model. The velocity 

models 

n
n → ±∞

2M− , 1M− , 0M , 1M  and 2M  are known as 
the linear sloth model, the linear slowness model, the 
exponential velocity model, the linear velocity model and 
the square root velocity model, respectively. 
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Offset-traveltime parametric equations 
I derive the offset-traveltime equations 
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where  is the hypergeometric function. 

The equations (2) can be used for modelling and ray 
tracing. The traveltime curves are shown in Figure 2. 

(2 1 , ; ;F a b c u

Traveltime parameters 

The traveltime parameters for this model are: 
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where  is two-way vertical traveltime,  is normal 

moveout velocity and ,  are heterogeneity 

coefficients of second and third order, respectively.  is 

the heterogeneity coefficient of order . The coefficients 
,  are plotted versus  in Figure 3. 
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Fomel and Stovas (2007) proposed the generalized non-
hyperbolic approximation based on an additional ray with 
the slowness maxp . The total number of parameters in 
this approximation is five. The first three parameters are 
defined at zero offset and correspond to the traveltime 
parameters ,   and . The last two parameters 
are defined from the additional ray. The approximation 
has the following form  
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where 0nmox x v t= is the normalized offset and 

parameters  FSB  and  are FSC
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Examples of velocity spectra by using equations (4) and 
(5) are shown in Figure 4. I also derive equations for the 
relative geometrical spreading (Figure 5) and one–way 
propagator (Figure 6) for the power-gradient velocity 
model. 

Inversion of the traveltime parameters 
The standard way to estimate the traveltime parameters 
is to perform the velocity analysis. Since models nM  are 

four-parameter models (layer thickness , velocity to 
the top of the layer , velocity ratio 

H
0v γ  and parameter 

), the accurate inversion requires four traveltime 
parameters to be estimated. In velocity analysis we 
compute the two-way traveltime, the normal moveout 
velocity and heterogeneity coefficients  and . The 
first problem is that there is no traveltime approximation 
which can be used to estimate four traveltime parameters. 
The maximum applicable number of traveltime 
parameters is three. In practice, estimation of  from 
seismic data is hardly possible. The accuracy of the 
parameter estimation is decreasing with increase of the 
order of traveltime parameter. Nevertheless, let us first 
assume that we succeeded to estimate both  and . 

Then we have to solve equations for  and  (i.e., 
equations 3) for 

n

2

S

2

S

S

3S

3S

3S
2 3S

γ  and . There is no analytical solution 
for this problem. The computation of 

n
γ  and  is a non-

trivial task. The resolution of this problem is very low, 
especially for small values of 

n

γ . Not all combinations of 

 and  are physically possible. It is confirmed by the 

series for heterogeneity coefficients  and , where 
the parameter  comes into the series coefficient from 
the fourth order. It means that for low values of 

2S 3S

2S 3S
n

γ , we 
can estimate γ , not n . For large values of γ , the 
problem is non-unique if we consider uncertainties in 
heterogeneity coefficients. We also have to constrain 
heterogeneity coefficients such that . For a 

given values of  and  there is a minimum physically 

3 2S S≥ 1≥

2S 3S

Eleventh International Congress of the Brazilian Geophysical Society 



ALEXEY STOVAS 
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________  

3

possible value of γ . From these considerations we can 
see that in practice the inversion of four traveltime 
parameters into the velocity model parameters within the 
framework of the power-gradient velocity model is hardly 
possible. If we consider the uncertainties in estimated 
traveltime parameters: 2.8 0.025nmov k= ± m s

 

 and 

, the depth dependent uncertainties in 
the velocity distributions depend on parameter  (as it 
shown in Figure 7). 

2 1.03 0.01S = ±

n

n

n

Conclusions 
I defined four-parameter power-gradient velocity model 
which has several well-known velocity models as special 
cases. The offset-traveltime equations are defined by the 
hypergeometric functions. The traveltime parameters and 
the series coefficients for traveltime squared are defined 
by the velocity model parameters. All known traveltime 
approximations are tested for this model, and the 
generalized non-hyperbolic approximation performs the 
best. The geometrical-spreading factor and the phase 
factor in one-way propagator are defined. The parameter 

 controls the curvature of the velocity model. This 
parameter is entering the higher-order series coefficients 
for all traveltime parameters, and if velocity ratio is closed 
to one, this parameter can be neglected. 
The three- and four-parameter inversion is discussed for 
the power-gradient velocity model. I show that it is 
practically impossible to resolve the heterogeneity 
coefficients for this model against velocity ratio and 
parameter . The uncertainty in the estimated normal-

moveout velocity and the heterogeneity coefficient  
results in uncertainty in the model parameters and all 
kinematic characteristics. 

2S
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Figure 1. Velocity profiles for the models 
, 0, 1, 2, 4, 8nM n = ± ± ± ± . The sign of  indicated by 

the line colour: blue lines for negative n  and red lines for 
positive n . The black line corresponds to 

n

n 0= . 
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Figure 2. The traveltime curves for models shown in 
Figure 1.  
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 Figure 6. The phase factor for one-way propagator for 
models shown in Figure 1.   
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Figure 4. The velocity spectra for models 

 (from top to bottom) using the 
generalized traveltime approximation.  
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Figure 7. The depth-dependent uncertainties in the 
velocity distribution for models  due to 
uncertainties in estimated traveltime parameters.  
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 Figure 5. The relative geometrical spreading inverse for 
models shown in Figure 1.   
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