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Abstract

In heterogeneous media, standard one-way wave
equations only describe the kinematic parts of one-
way wave propagation correctly. For a correct
description of amplitudes, the one-way wave equations
must be modified. In vertically inhomogeneous media,
the resulting true-amplitude one-way wave equations
can be solved analytically. The corresponding
amplitude modifications can be taken into account in
split-step and Fourier finite difference migrations in
such a way that they use these true amplitude one-
way wave equations instead of the standard ones in
order to implement a true amplitude wave equation
migration for zero-offset data. Synthetic data examples
demonstrate that the technique improves amplitude
recovery in the migrated images.

Introduction

Many seismic migration methods, particularly those directly
based on the wave equation, take only care of the
kinematic aspects of the imaging problem (i.e., the position
and structure of the seismic reflectors), while incorrectly
treating the dynamics (amplitudes, related to the energy
carried by the seismic wavefield). However, as post-
migration AVO and AVA studies are becoming more
and more important, the correct treatment of migration
amplitudes becomes imperative.

In this work, we study wave-equation migration based on
one-way wave equations. We are interested in such one-
way wave equations that correctly describe not only the
traveltime but also the amplitude of the resulting one-way
waves. These one-way wave equations are referred to as
true-amplitude one-way wave equations.

In homogeneous media, the product of the two differential
operators of the two one-way wave equations, which
are first-order differential equations, yields the differential
operator of the full wave equation. The one-wave wave
operators allow to separate the full wavefield into its
components traveling in different directions. Generally, the
factorization is used to split the wavefield into its up- and
downgoing parts. In this form, the one-way wave equations
are useful in modeling and, principally, in migration.

In a homogeneous medium, traveltimes and amplitudes
of the one-way waves, i.e., the solutions of the so-
obtained one-way wave equations are identical to those

of the solution of the full wave equation. However, in
inhomogeneous media, the use of the same one-way wave
equation leads to different amplitudes than those of the
solution of the full wave equation.

Recently, Zhang et al. (2003) showed how to modify the
differential operators of the one-way wave equations such
that, in zero-order ray approximation, the amplitudes are
the same as those governed by the full wave equation.
They have shown how to use the modified one-way wave
equations in finite-difference true-amplitude common-shot
wave-equation migration. Melo et al. (2006) transferred
this idea to poststack (zero-offset) phase-shift migration
(Gazdag, 1978) using the true-amplitude one-way wave
equations. They solved these equations analytically and
showed that amplitude correction can be achieved by a
simple factor to be applied at each depth step. Here,
we generalize their ideas to poststack split-step (Stoffa
et al., 1990) and Fourier finite-difference (Ristow and Rühl,
1994) migration using the true-amplitude one-way wave
equations.

Method

We consider the two-dimensional acoustic wave equation

L u = ∇2u−
1
c2

∂ 2u

∂ t2 = 0 , (1)

where u = u(x,z, t) is the seismic wavefield, and the
propagation velocity c may be constant or depend on one
or two spatial coordinates.

Ray equations

Let us start with the simple case of a velocity that depends
only on depth, i.e., c = c(z). In this case, the solution of
equation (1) can be found using its Fourier transform in time
as well as in the horizontal coordinate, viz.

∂ 2u

∂ z2 +ω2p2
z u = 0 , (2)

where

pz =
kz

ω
= ±

1
c(z)

√

1− (c(z)px)2 , (3)

where px is the slowness component relative to coordinate
x and

kz = ±

√

ω2

c2 − k2
x = ±

ω
c

√

1−
(ckx)2

ω2 . (4)

The representation in the rightmost part of equation (4)
was chosen so that the upper sign describes downward
propagation while the lower sign describes upward
propagation.

Substitution of the ray ansatz

u(kx,z,ω) = A(z)exp{iωτ(z)} , (5)
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where A is amplitude and τ is traveltime, in the Helmholtz
equation (2) leads to the eikonal and transport equations

(

∂τ
∂ z

)2

= p2
z ⇒

∂τ
∂ z

= ±pz , (6)

and

2
∂τ
∂ z

∂A
∂ z

+
∂ 2τ
∂ z2 A = 0 . (7)

Taking the derivative of the eikonal equation (6) with
respect to z using Snell’s law ∂ px

∂ z = 0, we find

∂ 2τ
∂ z2 = ±

∂ pz

∂ z
. (8)

Substitution of this result in the transport equation (7) yields

±

[

2pz
∂A
∂ z

+
∂ pz

∂ z
A

]

= 0 . (9)

While the vertical derivative of pz can be determined from
equation (3) as

∂ pz

∂ z
= −

1
pzc3

∂c
∂ z

, (10)

it will be more convenient below to recognize that for pz 6= 0,
equation (9) is equivalent to

∂A
∂ z

+
1
2

∂ ln(pz)

∂ z
A = 0 . (11)

In the above expressions, the upper and lower signs refer to
the down- and upgoing waves, respectively. Note that both
waves, independently of their predominant propagation
direction, must satisfy the same transport equation.

True-amplitude one-way wave equations

For a constant medium velocity, it is easy to verify that the
Helmholtz equation (2) can be factorized as

[

∂
∂ z

± ikz

][

∂
∂ z

∓ ikz

]

u = L
±
0 L

∓
0 u =

∂ 2u

∂ z2 + k2
z u = 0 , (12)

where

L
+
0 =

[

∂
∂ z

+ ikz

]

, L
−
0 =

[

∂
∂ z

− ikz

]

(13)

are the differential operators of the one-way wave
equations. Once we fix the sign of kz according to

kz = sgn(ω)

√

ω2

c2 − k2
x =

ω
c

√

1−
(ckx)2

ω2 , (14)

L
+
0 and L

−
0 describe downgoing and upgoing waves,

respectively. Therefore, any solution of

L
+
0 u+ = 0 or L

−
0 u− = 0 (15)

is also a solution of the Helmholtz equation (2). This
motivates the use of one-way wave equations in migration,
where only downward propagation is required.

Let us now look for solutions of the one-way wave
equations (15) of the type

u±(kx,z,ω) = A±(z)exp{iωτ±(z)} . (16)

The resulting eikonal and transport equations read

∂τ±

∂ z
= ±pz , (17)

∂A±

∂ z
= 0 . (18)

We see that the eikonal equations (6) and (17) are
identical, which reflects the well-known fact that even
in homogeneous media, the kinematics of the up- and
downgoing waves are correctly described by the one-
way wave equations. However, comparing the transport
equations (7) and (18), we see that they are identical only

in homogeneous media, where
∂c
∂ z

= 0 and consequently

∂ pz

∂ z
= 0.

Therefore, for the one-way wave equations to correctly
describe the amplitudes of the up- and downgoing waves,
at least up to zero-order ray theory, they need to be
modified (Zhang et al., 2003). The simplest way to do so is
by adding a new term α± to the one-way wave operators
L

±
0 . Doing so results in the modified equations

[

∂
∂ z

± ikz +α±

]

u = 0 . (19)

Searching for solutions of the ray type in equation (16), we
find the eikonal and transport equations

∂τ±

∂ z
= ±pz , (20)

∂A±

∂ z
+α±A± = 0 . (21)

Comparing these equations with those obtained for the
full wave equation [equations (6) and (7)], it is easy to
recognize that the eikonal equations are still the same. For
the transport equations to be identical, both α± need to be
chosen as

α± = −
1
2

1
p2

z c3

∂c
∂ z

=
1
2

∂
∂ z

ln(pz) . (22)

Thus, the true-amplitude one-way wave equations read
(Zhang et al., 2003)

{

∂
∂ z

∓ iω pz −
1
2

1
p2

z c3

∂c
∂ z

}

u = 0 , (23)

or, more conveniently,
{

∂
∂ z

∓ iω pz +
1
2

∂
∂ z

ln(pz)

}

u = 0 . (24)

By construction, these equations describe up- and
downgoing waves that possess, in zero-order ray theory
approximation, the same amplitudes and traveltimes as
those described by the full wave equation.

Split-step migration

Split-step migration was developed by Stoffa et al. (1990)
to migrate stacked seismic data in two or three dimensions.
This migration method is implemented in the ω −x and ω −
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k domain and allow us to use for small lateral variations in
velocity around the reference velocity in the jth layer, c j.

Using the notation of last section, we can deduce the split-
step approximation from the relation

iω
c

√

1+
c2

ω2

∂ 2

∂x
=

iω
c j

√

1+
c2

j

ω2

∂ 2

∂x
+





iω
c

√

1+
c2

ω2

∂ 2

∂x
−

iω
c j

√

1+
c2

j

ω2

∂ 2

∂x



 , (25)

where now c = c(x,z).

Expanding the first of the square roots inside the brackets
in a Taylor series up to first order in c around c j, we obtain

iω
c

√

1+
c2

ω2

∂ 2

∂x
≈

iω
c j

√

1+
c2

j

ω2

∂ 2

∂x
+

iω
c j

( c j

c
−1

)

. (26)

Substituting this approximation in the one-way wave
equation, we have an equation with lateral-variation
correction

∂U(kx,z,ω)

∂ z
=

iω
c j





√

1−
k2

x c2
j

ω2 +
c j

c
−1



U(kx,z,ω) . (27)

The solution of equation (27) can be put in the form

U ′(kx,z j+1,ω) = U(kx,z j,ω)exp







iω
c j

√

1−

(

kx c j

ω

)2

∆z







,

U(x,z j+1,ω) = U ′(x,z j+1,ω)exp

{

iω
(

1
c
−

1
c j

)

∆z

}

,

where U ′(x,z j+1,ω) is the inverse Fourier transform of
U ′(kx,z j+1,ω), and ∆z = z j+1− z j.

Complex Pad é Fourier finite difference migration

Following the methodology proposed by Ristow and
Rühl (1994), Amazonas et al. (2007) rederived the
FFD algorithm using the complex Padé approximation
(Millinazzo et al., 1997).

Ristow and Rühl’s FFD method can be obtained by the real
approximation of the square root in brackets in equation
(25) (Ristow and Rühl, 1994),

√

ω2

c2 +
∂ 2

∂x2 ≈

√

ω2

c2
r

+
∂ 2

∂x2 +

ω
cr

(p−1)

{

1+
c2

ω2
∂ 2

∂x2

a1 +b1
c2

ω2
∂ 2

∂x2

+
c2

ω2
∂ 2

∂x2

a2 +b2
c2

ω2
∂ 2

∂x2

+ ...

}

, (28)

where cr ≤ c is a constant reference velocity, and where
the coefficients an, bn, n = 1,2,3, ... depend on p = cr/c and
c = c(x,z). Equation (28) can be interpreted as a real Padé
approximation.

Amazonas et al. (2007) showed that a more stable
FFD method uses the corresponding complex Padé

approximation, represented by the following expression

p

√

1+
c2

ω2

∂ 2

∂x2
1

≈

√

1+
c2

r

ω2

∂ 2

∂x2
1

+C0(p−1)+ (29)

N

∑
n=1

An p(1− p) c2

ω2
∂ 2

∂x2
1

1+σBn
( c

ω
)2 ∂ 2

∂x2
1

,

where C0, An, and Bn are the complex Padé coefficients
determined from the real ones by a rotation of the branch
cut of the complex square root (Amazonas et al., 2007).
While the correct approximation requires that parameter σ
should be σ = 1+ p + p2, numerical experiments showed
that the heuristic value σ = 1+ p3 yields a more accurate
slowness curve.

Using the complex Padé FFD approximation in the
kinematic part of the one-way wave equation, we have an
equation with lateral variation correction

U ′(kx,z j+1,ω) = U(kx,z j,ω)exp







iω
c j

√

1−

(

kx c j

ω

)2

∆z







,

U ′′(x,z j+1,ω) = U ′(x,z j+1,ω)exp

{

iω
(

1
c
−

1
c j

)

∆z

}

,

∂U ′′(kx,z,ω)

∂ z
=

iω
c j

N

∑
n=1

An p(1− p)X2

1+σBnX2 U ′′(kx,z,ω) .

To find the FFD contribution we have to solve a finite-
difference scheme.

True-amplitude migration

We now use the true-amplitude one-way wave equations to
introduce amplitude control into split-step phase-shift plus
interpolation (SSPSPI) and complex-Padé FFD migrations.
Thus, we need to solve the true-amplitude one-way wave
equation

{

∂
∂ z

− iω pz −
1
2

d
dz

ln(pz)

}

u = 0 , (30)

where pz is still given by equation (3).

Following Melo et al. (2006), the differential equation (30)
can be solved by separation of variables. Integration from
initial depth z0 to final depth z f yields the expression for the
wavefield u f at depth level z f ,

u f = u0exp

{

iω
∫ z f

z0

pz dz+
∫ z f

z0

1
2

d
dz

ln(pz)dz

}

(31)

= u0exp

{

iω
∫ z f

z0

pz dz

}

exp

{

∫ z f

z0

1
2

d
dz

ln(pz)dz

}

.

Note that the first exponential term in equation (31) is
nothing else but the phase correction term of conventional
Gazdag migration. The second exponential term gives
rise to the amplitude correction in inhomogeneous media,
resulting from the correction term α in the true-amplitude
one-way wave equation (30).

Let us now suppose that the medium has a vertically
varying velocity, i.e., c = c(z). To solve the integral in the first
exponential term, we again divide the depth interval [0,z] in
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Figure 1: Migrated sections using SSPSPI depth migration.
Top: Conventional algorithm; Bottom: true-amplitude
algorithm.

Nz subintervals I j = {z|z j < z < z j+1; j = 0,1,2, ...,Nz − 1}.
We then apply the solution (31) to each single layer, i.e.,
z0 = z j and z f = z j+1. Denoting the wavefield at depth z j as
u j = u(kx,z j,ω), we may thus write

u j+1 = u j exp

{

iω
∫ z j+1

z j

pz dz+
∫ z j+1

z j

1
2

d
dz

ln(pz)dz

}

= u j

√

pz j+1

pz j

exp

{

∫ z j+1

z j

(iω pz)dz

}

. (32)

Thus, the true-amplitude expression for wave-equation
migration reads (Melo et al., 2006)

u j+1 = u j

√

pz j+1

pz j

exp
{

iω p̄z(z j+1− z j)
}

, (33)

where pz j and pz j+1 denote the vertical slowness vector
components at the top and bottom of the current layer,
while p̄z is the mean value of the function pz(z) in interval
[z j,z j+1]. For practical purposes, p̄z must be approximated
by some reasonably chosen value based on the known
values of pz. For example, pure phase-shift migration uses
the approximation p̄z = pz j .

Clearly, the first approximations to true-amplitude split-
step and FFD migrations are obtained by using the
corresponding square-root approximations (26) and (29)
for pz in the phase term while keeping the amplitude
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Figure 2: Migrated traces using SSPSPI depth migration
at the horizontal positions of x = 3901.44 m (top), x =
7863.84m (center) and x = 11545.82m (bottom) as obtained
with the conventional (red) and true-amplitude (blue)
algorithm.

correction unchanged. Future studies will include the use
of these approximations also for the amplitude correction
factor.

Numerical experiments

To test the numerical properties of the amplitude correction
for SSPSPI and complex-Padé FFD migration, we applied
the proposed algorithms with and without amplitude
correction to synthetic data from the SEG/EAGE salt model
(Aminzadeh et al., 1995).

SSPSPI migration

For the SSPSPI migrations, we used a set of 20 reference
velocities chosen between the minimum and maximum
velocity at the current depth level. Figure 1 shows the
migrated sections obtained by the SSPSPI (top) and true-
amplitude SSPSPI (bottom) algorithms. We see that the
true-amplitude algorithm produces a clearer image of the
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Figure 3: Migrated sections using complex-Padé FFD
depth migration. Top: conventional algorithm; Bottom:
true-amplitude algorithm.

reflectors. Particularly the bottom of the salt and subsalt
reflectors have increased amplitudes. The colored lines
indicate locations for trace-to-trace comparisons.

To evaluate the result more quantitatively, we have
extracted three traces from these sections, at the horizontal
positions of x = 3901.44 m (blue line in the sections), x =
7863.84m (green line) and x = 11545.82m (red line). These
locations were chosen to represent three different areas of
the model. The leftmost position (blue line) is in the purely
sedimentary region, the central position (green line) marks
the central part of the salt body, and the rightmost position
(red line) cuts the right wedge of the salt body.

Figure 2 compares these three traces as obtained with
the conventional (red) and true-amplitude (blue) algorithm.
The general amplitude enhancement is clearly visible.
However, we note that not all reflectors are enhanced by
the same amount. The relative gain of the peaks as
numbered in Figure 2 is quantified in Table 1. These
values corroborate our impression that the main amplitude
enhancement is achieved for the bottom-of-salt and subsalt
reflectors.

Complex Padé FFD migration

Our FFD migration used the smallest model velocity at the
present depth level as the reference velocity cr. Figure 3
shows the migrated sections obtained by the conventional
(top) and true-amplitude (bottom) complex-Padé FFD

Peak SSPSPI amplitude gain (%) FFD amplitude gain (%)

1 38.46 18.66
2 46.17 28.08
3 42.49 18.60
4 53.35 24.71
5 48.16 25.89
6 28.66 12.77
7 44.15 26.98
8 37.01 20.59
9 61.50 26.72
10 22.24 11.05
11 44.15 17.88
12 63.31 36.47
13 48.01 18.99
14 50.60 25.11
15 53.84 26.94
16 72.60 28.79

Table 1: Relative gain of the peaks as numbered in
Figures 2 and Figure 4.

migration algorithms. As expected, the FFD algorithms
produce a better image than the corresponding SSPSPI
algorithms. The comparison between the conventional and
true-amplitude FFD algorithms provides a similar picture as
that for the SSPSPI migration. We see enhanced reflector
amplitudes, particularly at the bottom-of-salt and subsalt
reflectors.

As before, we extracted three traces from these sections
for a trace-by-trace comparison at the horizontal positions
of x = 3901.44 m (blue line in the sections), x = 7863.84 m
(green) and x = 11545.82 m (red). These traces from the
conventional (red) and true-amplitude algorithms (blue) are
compared in Figure 4. As in the SSPSPI case, we see
a general enhancement of the amplitudes, however not
uniform. The relative amplitudes gains are also presented
in Table 1. We note that the general distribution of which
reflectors experience the strongest enhancement is very
similar to the one of SSPSPI migration. However, the
overall amplitude enhancement in the FFD algorithm is
about 50% reduced.

The reason for this different amplitude behavior is the fact
that the amplitude correction for the FFD algorithm is done
using the reference velocity, which is the lowest velocity
at the current depth level, while the SSPSPI algorithm
effectively uses reference velocities much closer to the true
velocity. Moreover, by interpolating wavefields after the
amplitude correction, the SSPSPI algorithm even carries
information about the lateral velocity variations over to the
amplitudes.

Conclusion

For a correct description of amplitudes in wave-equation
depth migration, the one-way wave equations must be
modified (Zhang et al., 2003). The modified true-amplitude
one-way wave equations can be solved exactly for vertically
inhomogeneous media (Melo et al., 2006). In this work,
we have implemented the resulting amplitude correction
factor in split-step phase-shift plus interpolation (SSPSPI)
and complex Padé Fourier finite difference (CPFFD)
migration algorithms, so as to carry out a true-amplitude
wave-equation migration for poststack (zero-offset) data.
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Figure 4: Migrated traces using complex Padé FFD depth
migration at the horizontal positions of x = 3901.44 m (top),
x = 7863.84 m (center) and x = 11545.82 m (bottom) as
obtained with the conventional (red) and true-amplitude
(blue) algorithm.

Synthetic data examples demonstrate that the technique
improves amplitude recovery in the migrated images. In the
SEG/EAGE salt model, the main amplitude enhancement
was achieved for the bottom-of-salt and subsalt reflectors.
The relative gain in amplitudes was significantly higher for
SSPSPI than for CPFFD migration.

In this work, we investigated the most basic approximations
to true-amplitude SSPSPI and CPFFD migrations,
obtained by using their respective square-root
approximations only in the phase term while keeping
the simple c(z)-amplitude correction unchanged. This
explains the better amplitude recovery in SSPSPI
migration, which involves a wavefield interpolation at
each lateral position after the propagation and amplitude
correction. In this way, it takes lateral velocity variations
into account even in the amplitudes. On the other hand,
in CPFFD migration the amplitude correction is simply
carried out with the reference velocity, thus ignoring

lateral velocity variations. Future studies will include the
use of the respective SSPSPI and CPFFD square-root
approximations also for the amplitude correction factor.
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