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Abstract

Standard real-valued finite-difference (FD) and Fourier
finite-difference (FFD) migrations cannot handle
evanescent waves correctly, which can lead to
numerical instabilities in the presence of strong
velocity variations. A possible solution to these
problems is the complex Pad é approximation, which
avoids problems with evanescent waves by a rotation
of the branch cut of the complex square root. In this
paper, we apply this approximation to the acoustic
wave equation for vertical transversely anisotropic
(VTI) media to derive more stable FD and hybrid
FD/FFD migrations for such media. Our analysis of the
dispersion relation of the new method indicates that it
should provide more stable migration results with less
artifacts and higher accuracy at steep dips. These
studies lead to the conclusion that the rotation angle
of the branch cut that should yield the most stable
image is 60◦. This result is confirmed by the numerical
impulse responses and synthetic data examples.

Introduction
Wave-equation migration algorithms have performed better
than ray-based migration methods when the velocity model
has strong lateral velocity variations. One drawback
of one-way wave-equation migrations, though, is their
general difficulty to image steep dips. For finite-difference
(FD) (Claerbout, 1971) and Fourier finite-difference (FFD)
migrations (Ristow and Rühl, 1994) can provide wide-angle
approximations for the one-way continuation operators,
thus improving the imaging of steep-dip reflectors.

However, standard real-valued FD and FFD migrations
cannot handle evanescent waves correctly (Millinazzo
et al., 1997). As a consequence, FFD algorithms
tend to become numerically unstable in the presence of
strong velocity variations (Biondi, 2002). To overcome
this limitation, Biondi (2002) proposes an unconditionally
stable extension for the FFD algorithm. Earlier, Millinazzo
et al. (1997) proposed a different approach to treating
these evanescent modes in ocean acoustic applications,
introducing an extension of the Padé approximation called
complex Padé. It consists of a rotation of the branch
cut from the negative axis into the complex plane. The
complex Padé expansion has been used in applied
geophysics. Zhang et al. (2003) use the method in
finite-difference migration. However, their implementation
is not optimized for wide angles. Zhang et al. (2004)

propose an FFD migration based on a different realization
of complex Padé. Recently, Amazonas et al. (2007)
derived FD and FFD algorithms using the complex Padé
approximation for isotropic media to handle evanescent
waves. They demonstrated that this procedure stabilizes
FD and FFD migration without requiring special treatment
for the migration domain boundaries and enables an
accurate migration up to higher dips.

All these methods are based on approximations to the
acoustic wave equation. However, the acoustic wave
equation can only be generalized to include elliptic
anisotropy. More complex anisotropic phenomena cannot
be described by a physically meaningful scalar wave
equation. Thus, Alkhalifah (1998) used the dispersion
relation for vertical transversely isotropic (VTI) elastic
media to derive an approximate acoustic wave equation
for P-waves in VTI media. Based on his work, several
authors have developed anisotropic FD and FFD migration
methods (Ristow, 1999; Nolte, 2005; Zhang et al., 2005).
Generally, FD migrations are cheaper but suffer from a
pseudo S-wave artifact. To overcome this problem, Fei and
Liner (2008) proposed a hybrid FFD and FD algorithm for
VTI media. In this paper, we combine the ideas of these
authors with the complex Padé approximation to derive a
more stable FD algorithm for VTI media.
Method
According to Alkhalifah (2000), the acoustic wave equation
for VTI media is given by

∂ 2P

∂ t2 = (1+2η)v2
n

∂ 2P

∂x2 + v2
p0

∂ 2P

∂ z2 −2ηv2
nv2

p0
∂ 4F

∂x2∂ z2 , (1)

where P is the VTI-acoustic wavefield, vp0 is the vertical
P-wave velocity of the medium, and vn = vp0

√
1+2δ is the

NMO velocity. Moreover, the anellipticity parameter η =
ε−δ
1+2δ , where ε and δ are Thomsen’s parameters (Thomsen,
1986). Alkhalifah and Tsvankin (1995) demonstrated that a
representation in terms of just two anisotropic parameters,
vn and η , is sufficient to represent time-related processing.
Finally, F is the second integral in time of P, i.e., P =
∂ 2F/∂ t2.

Applying the Fourier transform in x, z and t to equation (1)
leads to the following dispersion relation

k2
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where kx is the horizontal wavenumber and ω is the angular
frequency.

From Fei and Liner (2008), we use the following notation

u2 =
k2

x v2
n

ω2 . (3)
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Figure 1: Complex Padé FD approximation for the
dispersion relation of the one-way wave equation,
computed with three terms and different rotation angles.
Frist: α = 45◦, Second: α = 60◦, Third: α = 75◦. Left: Real
part. Right: Imaginary part.
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Figure 2: Complex Padé FFD approximation for the
dispersion relation of the one-way wave equation,
computed with three terms and different rotation angles.
First: α = 60◦, Second: α = 75◦, Third: α = 90◦. Left: Real
part. Right: Imaginary part.
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Figure 3: Real Padé (α = 0◦) FD migration for an
impulse response for a constant-velocity VTI medium. The
anisotropy parameters are vp0 = 2800 m/s, ε = 0.21 and
δ = −0.032.

Taking the square root of equation (2) using equation (3)
yields

kz =
ω

vp0

√

1−
u2

1−2η u2 , (4)

where the sign for downward propagation has been
chosen. For η = 0, equation (4) reduces to the elliptically
anisotropic one, which differs from the isotropic one only
by a constant scale factor vn/vp0. Note that the anisotropic
denominator is smaller than one, which makes anisotropic
migration generally more unstable than isotropic migration.
Complex Pad é FD/FFD approximation
In this section, we derive the complex Padé approximation
for the above dispersion relation, because we want a steep-
dip approximation and improved stability by better handling
of evanescent waves. For this purpose, we have to
represent the square-root in equation (4) using the complex
Padé expansion.

Real Padé approximation

A formal representation for square-root operator is based
on the Padé expansion (Bamberger et al., 1988):

√

1−X2 ≈ 1−
N

∑
n=1

an X2

1−bn X2 , (5)

where for our anisotropic kz of equation (4),

X2 =
u2

1−2η u2 . (6)

The number of terms N of the expansion should, in
principle, be infinite, but in practice, generally two to
four terms suffice for a reasonable approximation. The
coefficients an and bn are (Bamberger et al., 1988):

an =
2

2N +1
sin2 nπ

2N +1
and bn = cos2 nπ

2N +1
. (7)

Equation (5) is known to provide an acceptable
approximation up to a certain limiting dip angle. The
range of dip angles can be extended by using more terms
in the series. However, if X2 > 1 in equation (5), the left side
is a purely imaginary number, while the right side remains
a real-valued quantity. In other words, the approximation
breaks down. Physically, this means that approximation (5)
cannot properly handle evanescent modes. This causes
numerical instabilities and is responsible for the unstable
behavior of the FFD algorithm in the presence of strong
velocity variations (Biondi, 2002).
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Complex Padé approximation

To overcome these limitations, Millinazzo et al. (1997)
proposed a complex representation of the Padé expansion
in equation (5). They achieve this goal by rotating the
branch cut of the square root into the complex plane. Their
final expression is

√

1−X2 ≈C0 −
N

∑
n=1

An X2

1−Bn X2 , (8)

where An =
ane−iα/2

[1+bn(e−iα −1)]2
, Bn =

bne−iα

1+bn(e−iα −1)
, and

C0 = eiα/2

[

1+
N

∑
n=1

an(e−iα −1)

1+bn(e−iα −1)

]

, where α is the rotation

angle of the branch cut of the square root in the complex
plane. The values An and Bn are the complex Padé
coefficients, with an and bn being the real ones as defined
in equations (7).

Thus, expanding kz of equation (4) into a complex Padé
series, we find

kz =
ω

vp0

[

C0 −
N

∑
n=1

An X2

1−Bn X2

]

(9)

with X defined in equation (6). This is the 2D anisotropic
complex-Padé finite-difference depth migration operator in
VTI media. Note that, as before, setting η = 0 in equation
(6) leads to the corresponding operator for isotropic and
elliptically anisotropic media.

To evaluate the quality of the complex Padé FD
approximation (9), Figure 1 shows its comparison with the
exact dispersion relation and its real Padé approximation
for a homogeneous medium with ε = 0.21 and δ = −0.032,
i.e., η = 0.17. Corresponding tests with different values of
η exhibit a similar behavior. The FD approximation was
calculated using three terms of the Padé series with three
different rotation angles of α = 45◦, α = 60◦ and α = 75◦.
The improvement in the approximation of the real part of
the dispersion relation with increasing α is evident. The
blessings are a bit more mixed for the imaginary part. While
the approximation in the evanescent region improves for
increasing α , there is a short interval of negative imaginary
part immediately before the evanescent region, which
increases with α . Note that this negative imaginary part will
cause the corresponding waves to increase exponentially,
thus causing instabilities.

For this reason, the best Padé FD approximation of the
imaginary part is actually achieved for a rotation angle
of about 60◦, where the approximation of the real part is
already quite good while there is still no zone of negative
imaginary part. Since the main numerical instabilities of an
FD migration are caused by incorrectly treated evanescent
waves, it is to be expected that a rotation angle of about
60◦ will produce the cleanest migrated image with the least
artifacts. Note, however, that even a rotation by a small
angle improves the behavior of the FD approximation (see
top part of Figure 1). Although it creates rather strong
fluctuation in the evanescent domain of the real part of kz, it
already introduces a nonzero imaginary part, meaning that
the incorrect evanescent modes at least will be attenuated.
In this respect, it is important to note that the peaks in
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Figure 4: Complex Padé FD migration for an impulse
response for a constant-velocity VTI medium. The
anisotropy parameters are vp0 = 2800 m/s, ε = 0.21 and
δ = −0.032. First: α = 45◦, Second: α = 60◦, Third:
α = 75◦.

the imaginary part, representing the strongest damping,
coincide with peaks in the real part that indicate the most
incorrect propagation behavior.

Using the complex the Padé expansion, we can also derive
a corresponding 2D anisotropic complex-Padé Fourier
finite-difference depth migration operator in VTI media. It
is given by

kz =
ω
c

{

√

1−
c2

v2
n

u2 +C0(p0 −1)−

N

∑
n=1

An u2
(

p0 − p2
n

1− (Bn +2η +Bn p2
n)u2

)

}

, (10)

where c is the constant velocity of the isotropic reference
medium, and where p0 = c/vp0 and pn = c/vn. Note
that, equation (10) has a phase-shift part, a split-step
part and a finite-difference part, like in the case of the
real Padé approximation (Ristow and Rühl, 1994). Our
implementation of the third part of equation (10) uses a
Crank-Nicholson FD scheme.

To evaluate the quality of the complex Padé FFD
approximation (10), Figure 2 shows its comparison with the
exact dispersion relation and its real FFD approximation
for a homogeneous medium with p0 = 0.5, ε = 0.21 and
δ = −0.032. The FFD approximation was calculated using
terms of the series with three different rotation angles
of α = 60◦, α = 75◦, and α = 90◦. We immediately
recognize the improvement in the approximation of the
real part of the dispersion relation in comparison to the
real Padé approximation. Its dependence on α , however,
is negligible. On the other hand, the approximation of
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Figure 5: Complex Padé FFD migration for an impulse
response for a constant-velocity VTI medium. The
anisotropy parameters are vp0 = 2800 m/s, ε = 0.21 and
δ = −0.032. First: α = 60◦, Second: α = 75◦, Third:
α = 90◦.
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Figure 6: Hybrid complex-Padé migration for an impulse
response for a constant-velocity VTI medium. The
anisotropy parameters are vp0 = 2800 m/s, ε = 0.21 and
δ =−0.032. For the hybrid migration, we used the optimum
rotation angle for each individual algorithm, i.e., α = 90◦ for
the FFD part and α = 60◦ for the FD part.

the imaginary part in the evanescent region improves for
increasing α . While the approximation does not recover
the imaginary part correctly, the damping of the evanescent
waves increases with α , thus stabilizing the migration
process.

For this reason, the best Padé FFD approximation of the
imaginary part is actually achieved for a rotation angle of
90◦. Note, however, that even a rotation of 45◦ improves
the behavior of the FFD approximation (see Figure 2).

Hybrid FFD/FD migration

It is important to recognize that the acoustic VTI wave
equation (1) has two solutions (Alkhalifah, 2000). One
of these solutions is the desired result representing
a wavefront coincident with the elastic compressional
wavefront. The other solution is an additional event, which
has previously been observed in full waveform modeling.
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Figure 7: Synthetic model (courtesy of HESS corporation).
Top: vertical velocity; center: ε; bottom: δ .

However, apparently this additional event was not always
understood as a second solution to the acoustic VTI wave
equation. Therefore, it has been labeled as numerical
artifact (Grechka et al., 2004), sometimes called the
pseudo-S-wave artifact (Fei and Liner, 2008). Alkhalifah
(2000) solved equation (1) analytically and observed that
the undesired solution can be eliminated with proper initial
conditions. However, such initial conditions would have to
be medium dependent and are thus very hard to find.

Since the FD algorithm calculates a numerical solution of
the above acoustic VTI wave equation, it will generally
find a superposition of both theoretical solutions. Tests
by Alkhalifah (2000) indicate that the second solution does
not develop if the source is located in an isotropic region.
Thus, he suggests to place the source in an isotropic layer
to suppress it.

Instead, Fei and Liner (2008) seek a more general
algorithm that does not include the additional solution,
so that the source can be placed arbitrarily in an
anisotropic medium. They demonstrated that the event
can be eliminated by a hybrid application of FFD and FD
migrations. Since we already have studied the complex
Padé approximation for both FD and FFD migration, it is
only natural to use the idea developed by Fei and Liner
(2008) to propose a complex-Padé hybrid FD/FFD depth
migration.
Numerical Examples
As a next step, we investigate the numerical behavior of
the proposed complex-Padé VTI FD and FFD migration
methods.
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Impulse Response Test

First, we investigate the impulse response of the acoustic
VTI wave equation (1). As a reference, Figure 3 shows
the impulse response at t = 0.5 s of a real Padé (α =
0◦) FD migration for a homogeneous (constant velocity,
constant η) VTI medium. The source pulse is a Ricker
pulse with peak frequency of 25 Hz. The migration was
carried out using three terms in the Padé expansion. The
most prominent features in Figure 3 are the two strong
events that are the two solutions of the acoustic VTI wave
equation, i.e., the desired qP wavefront and the undesired
pseudo-S wave (V-shaped second arrival). Additionally, we
immediately note some background noise resulting from
instabilities. These instabilities appear everywhere in the
Figure, even causing noncausal events. They are the
largest at near horizontal propagation where the influence
of incorrectly treated evanescent waves is the strongest.

Figure 4 depicts the same impulse response of the
corresponding complex Padé FD migration in the same
medium, using a rotation angle of α = 45◦, α = 60◦ and α =
75◦, respectively. While the complex Padé approximation
cannot eliminate the pseudo S-wave, it greatly reduces the
instabilities in all panels of Figure 4. Note in particular that
even the rotation angle of 5◦ almost eliminates most of the
noncausal events in spite of its rather poor approximation
of the evanescent part of the dispersion relation.

As a final, more subtle difference between Figures 3
and 4, we note that while all impulse responses have
energy up to high propagation angles, the real Padé
approximation produces a slightly stronger distortion of the
shape of the desired event at steep dips, causing it to
bend inwards at the top. The improvement achieved by
the complex Padé representation is a consequence of the
better approximation of the dispersion relation in the high-
angle range.

Comparing the complex Padé FD impulse responses of
Figure 4 to each other, we observe that the image for
α = 60◦ is the best one. At α = 5◦, we still see the near
horizontal artifacts of the evanescent waves. The impulse
responses for α = 45◦ and α = 60◦ are equally clean. Their
main difference lies in the slightly stronger inward bending
of the vertical part of the impulse response at α = 45◦.
At higher rotation angles, the noncausal artifacts become
stronger again. This is in agreement with the previous
study of the dispersion relations, which also indicated that
α = 60◦ should be the best rotation angle for complex Padé
FD migration.

Figure 5 depicts the same impulse response of the
corresponding complex Padé FFD migration in the same
medium, using a rotation angle of α = 60◦, α = 75◦ and α =
90◦, respectively. Note that in these figures, the pseudo-
S-wave artifacts do not appear. On the other hand, this
method does not provide a good aperture of the impulse-
response, i.e., steep dips are strongly reduced. Moreover,
the real or complex FFD algorithm is more expensive than
its corresponding FD counterpart.

Because of these drawbacks of FFD migration, Fei and
Liner (2008) proposed a hybrid algorithm. This algorithm
is a combination of the FD and FFD algorithms. As its real
counterpart, our complex-Padé FD/FFD hybrid migration
algorithm uses an FFD implementation for a few steps in
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Figure 8: Migrated sections using complex-Padé FD depth
migration. Top: Anisotropic algorithm, Bottom: Isotropic
algorithm.

z, for example 5 steps, and then carries over to the FD
implementation. This algorithm is greatly advantageous,
because the computation cost and accuracy is almost the
same as that of the FD algorithm and it does not generate
the pseudo-S-wave artifact. Figure 6 shows the impulse
response of the hybrid complex-Padé migration. This
figure is much cleaner the the FFD one, has more more
pronounced steep dips, and a strongly reduced pseudo
S-wave. To generate the impulse response of Figure 6,
we used the underlying complex-Padé approximation with
the optimum rotation angles, i.e., the FFD algorithm with
α = 90◦ and the FD algorithm with α = 60◦.

Synthetic data test

We tested the complex-Padé migration algorithms on a
synthetic data set courtesy of HESS corporation. Figure 7
shows the vertical P-wave model and the distribution of
Thomsen’s (1986) parameters ε and δ . All migrated
images were constructed using a cross-correlation imaging
condition.

Figure 8 shows the anisotropic (top) and isotropic (bottom)
migrated sections with optimal rotation angle of α = 60◦.
There are some spurious events because no multiple
suppression was applied. The primary reflection events
appear clearly. As expected, the anisotropic migration is
much better than the isotropic one.

Anisotropic complex-Padé FD migration correctly positions
all reflectors, even below the salt. Isotropic complex-
Padé FD migration does not completely focus the reflectors
and has some with steeply dipping events. Overall, the
amplitude is weaker than that of anisotropic migration.

Figure 9 shows the anisotropic complex-Padé hybrid depth
migration. Actually, the images of anisotropic complex-
Padé FD depth migration and anisotropic complex-Padé
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Figure 9: Migrated section using complex-Padé hybrid
depth migration.
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Figure 10: Migrated sections using complex-Padé FD
depth migration with α = 5◦. Top: Anisotropic algorithm,
Bottom: Isotropic algorithm.

hybrid depth migration look practically identical. The
reason is that the HESS synthetic data set has its sources
in an isotropic water layer, so that the pseudo-S-wave
artifact is not generated by the FD algorithm.

For this model with strong lateral velocity variations, real
FD migration is unstable. Therefore, we cannot compare
the complex-Padé FD algorithm with its real counterpart.
To indicate the problems, Figure 10 shows the anisotropic
(top) and isotropic (bottom) migrated sections using FD
algorithm with a small rotation angle of α = 5◦. The
anisotropic migration (top) is still suffering from instabilities
due to incorrect treatment of the evanescent waves. The
isotropic algorithm is somewhat more stable, so that a
small rotation of the branch cut is already sufficient to
completely eliminate the instabilities.
Conclusions
In this work, we have combined the anisotropic migration
for VTI media using the acoustic VTI wave equation of

Alkhalifah (2000) with the complex Padé FD approximation
of Amazonas et al. (2007) to derive a more stable VTI
migration method. Our studies of the dispersion relation of
the new method indicate that it should provide more stable
migration results with less artifacts and higher accuracy
at steep dips. The best rotation angle of the branch
cut turns out to be 60◦. This result is confirmed by the
numerical impulse responses. A synthetic data example
demonstrates the improved stability and reduced artifacts
of complex Padé FD and FD/FFD hybrid migrations.
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