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Abstract 
 
We show a new method of seismic resolution 
improvement using the Continuous Wavelet Transform 
(CWT). Using the CWT and the available bandwidth in the 
seismic, the phase and amplitude spectra of harmonics 
and sub-harmonics can be computed. These harmonic 
and sub-harmonic frequencies are then convolved onto 
the input data. Only frequencies for reflectivity that is 
above the ambient noise level in the CWT domain is 
added to the seismic wavelet. This process broadens the 
bandwidth of the signal which increases the resolution of 
the seismic data. 

 

Introduction 

The subsurface is neither fully elastic nor homogenous 
and as a result we have dissipation of high frequency 
energy (conversion to heat) and velocity dispersion. All of 
these effects give us a distorted and stretched wavelet 
(Wang, 2006). The end result is poorer resolution of our 
seismic data. 

The algorithm we introduce attempts to recover the lost 
wavelet characteristics by using the available bandwidth 
in the seismic data. The available bandwidth acts as the 
fundamental frequencies, for which harmonics will be 
computed from, and added back into the wavelet by a 
convolutional like process in the CWT domain. This 
effectively reshapes the wavelet and broadens the 
spectrum. Any harmonic frequencies that do not match 
reflectivity above the ambient noise level in the CWT 
domain will not remain in the final result. 

This process is not limited to the high frequency end only. 
The same algorithm can be applied to the low end of the 
spectrum by computing sub-harmonics from the 
fundamental frequencies (available bandwidth). This can 
be important in areas where much of the lower frequency 
data has been suppressed due to ground roll and other 
low frequency noise trains. 

 

Theory 
 
The CWT is defined as the convolution of a time series 
f(t) with a scaled (s) and translated (τ) wavelet Ψ(t).  
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where (*) indicates the complex conjugate 
 
The wavelet Ψ must meet the admissibility condition if the 
analyzing wavelet is going to be used to reconstruct the 
original time series (Qian, 2002). 
 
The admissibility condition is given by: 
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where Ψ(ω) is the Fourier transform of ψ(t). 
 
The Admissibility Condition implies that ( ) 0=Ψ ω for ω = 0 

and . This tells us that ψ(t) has a zero 

mean and is a wavelet. 
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The scaled wavelets are called daughter wavelets as they 
are scaled from the mother wavelet ψ. Because the 
implementation of the CWT is a discrete operator and not 
a truly continuous operator, a choice needs to be made 
as to how many daughter wavelets will be used, thus how 
much redundancy. A minimum of 10 voices per octave is 
sufficient to recreate the input time series from the 
transform by computing its reconstruction. 
 
The CWT, although highly redundant, provides a very 
detailed description of the signal in terms of time and 
frequency (Walker, 1999).  These properties are utilized 
to predict the harmonics and sub-harmonics used for 
bandwidth extension.  
 
We chose the Morlet wavelet as our mother wavelet 
which is a complex function representing a plane wave 
modulated by a Gaussian. The complex nature of the 
wavelet permits the calculation of amplitude and phase 
for each scale at distinct times. The Morlet wavelet is 
given by: 
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where the real and imaginary parts are: 
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The Morlet wavelet is also optimal in that it closely follows 
the uncertainty principle as it is defined in time-series 
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analysis. This helps to give us an optimal distribution of 
time vs. frequency balance (Teolis, 1998). The 
uncertainty principle places limits on our time-frequency 
analysis. These limits prevent us from knowing both the 
exact frequency and time simultaneously. 
 
To reconstruct the time series, a double integral is 
required since we went from a function in time f(t) to a 
function of time and scale W(τ,s). The reconstruction 
formula is given by: 
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where CΨ  is given by the Admissibility Condition. 
 
One other limitation should be noted in this process of 
bandwidth extension. Any such endeavor will be limited 
by the Sampling Theorem and can not recover reflectivity 
information higher than the Nyquist frequency. 
Furthermore, because of leakage from filters (side lobes), 
anti-aliasing filters often limit the maximum recoverable 
reflectivity to less than Nyquist. 

 

Examples 
 
The first example is a classic wedge model with equal 
positive reflectivity for both the top and bottom reflectors. 
The top reflector is flat, and the bottom reflector has a dip 
of .3ms per trace. The frequency content of the low 
frequency wedge is 7-55 Hz. The bandwidth extended 
wedge and the high frequency wedge both have 
frequency content of 7-85 Hz. As can be seen in this 
example the resolution of the low frequency wedge by 
has been significantly improved by bandwidth extension. 
 

 

 

 
 

 

 

 

 

 

 

 

 

Figure 1 Bandwidth extension applied to a wedge model. 
(a) Low-frequency synthetic input to bandwidth extension. 
(b) High-frequency extension of input (top). (c) High 
frequency synthetic to compare to bandwidth extension 
results.  Blue and green arrows indicate the limit of 
resolution of the top and bottom reflectors of the wedge 
respectively. 

Real Data Examples 

The next example is from an onshore 3D survey. The 
wells ties are shown along with the cross-correlations for 
the well ties. The input data (figure 2) has large side lobes 
indicated on the cross-correlation for the tie. This 
suggests that although the tie is good, the data probably 
has a “ringy” (repetitive) appearance (figure 4). After 
bandwidth extension we see a much better cross-
correlation with the peak/trough ratio much smaller for the 
side lobes. Figure 5, shows the bandwidth extended data 
and it can be seen that the data has a much better 
character than the input data (figure 4). 

 

 
Figure 3 Low frequency input data well tie. Note the large 
side lobes on the cross-correlation. 
 
 
 

 
Figure 4 Bandwidth extended data well tie. Note the 
small side lobes on the cross-correlation, 
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Figure 5 Low frequency input data 17-55Hz showing 
“ringy” or repetitive character. Red curve is an overlaid 
zero offset synthetic with an extracted wavelet. 
 

 
Figure 6 Bandwidth extended data 12-120Hz showing 
more character than input data. Red curve is an overlaid 
zero offset synthetic with an extracted wavelet. 
 
Our final example is from another 3D onshore survey. 
The large amplitude reflector is a shale-limestone 
interface (figure 7). The limestone when porosity is 
present and is on a high structurally is usually a good gas 
reservoir. On the low frequency data it is difficult to 
ascertain as to whether porosity is present in the 

limestone. The bandwidth extended data shows 
interesting character that is related to the presence of 
porosity in the limestone (figure 8). 
 

 
Figure 7 Low frequency data, large amplitude peak is 
shale-limestone interface. Red curve is zero-offset 
synthetic overlaid with extracted wavelet. 
 

 
Figure 8 Bandwidth extended data porosity zone is now 
evident. Red curve is zero-offset synthetic overlaid with 
extracted wavelet. 
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Conclusions 

Bandwidth extension has been demonstrated to be 
possible and fruitful for seismic enhancement and 
interpretation.  There are limitations: the Sampling 
Theorem limits the maximum recoverable reflectivity to 
Nyquist and anti-aliasing filters will often set this limit 
below Nyquist.  

The 2-layer wedge model demonstrated that bandwidth 
extension can help resolve pinch outs and other similar 
stratigraphic features. The real data examples show that 
besides just enhancement of bandwidth we also get the 
benefit of reduced “ringy” character and can help reveal 
such stratigraphic or facies changes related to porosity 
changes. 

The Widess Model (Widess 1975) suggests that there is 
seismic reflectivity available below the dominant 
frequency wavelength. This information can be extracted, 
resulting in an increase in resolution by adding harmonic 
frequencies back to the data. Once this is done many 
features such as minor faults, on-laps, pinch outs and 
other stratigraphic features come to light. All of these 
features can have a significant impact on interpretation of 
seismic data. 
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