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Abstract 

The use of the concept of Gaussian beams in seismic 
migration has been highly considered in recent times and 
it is not a new issue. With the advent of non-conventional 
and mandatory new exploration targets in Brazil (such as 
the presalt), the imaging task has been highly demanded 
in order to bypass common (known ones) and new 
features of the wavefield propagation, such as anisotropy 
and some other factors. Since migration algorithms today 
are not anymore imaging-only process, comes into play 
the task of inversion, alongside with interpretation, 
prospecting and drilling. This paper then compares the 
theoretical results of two true-amplitude migration 
algorithms and their abilities as attributes estimators. 

Introduction 

In 1954 J. G. Hagedoorn published an article entitled “A 
process of seismic reflection interpretation” in the 
Geophysical Prospecting journal where he introduced an 
heuristic seismic imaging technique. This graphical 
imaging construction technique became known as the 
“swinging arm technique”, “string construction” or “ruler 
and compass method” and, according to some authors, 
constitutes what it is today known as Kirchhoff 
migration/inversion. In summary the method uses 
isochrones and diffraction surfaces to construct coherent 
events either in the time and depth domains.  

Although Hagedoorn’s ideas considered only zero-offset 
data, it was pioneering in its sense of the duality among 
the (acquired) seismic data and its respective diffractors 
within the Earth. The images of reflection surfaces, in this 
manner, are obtained by a superposition of arcs of circles 
in which the envelope of a set of these circles forms a 
curve where every point of it satisfies the condition of 
especular reflection. With the development of the oil 
industry and the growing use of digital computers in the 
seismic data processing, the graphical technique was 
gradually substituted by robust and efficient algorithms 
that perform the same task, wherein among them the 
Kirchhoff is the most known and widely used, especially in 
3D processing. All Hagedoorn’s original ideas are present 
in the Kirchhoff migration/inversion algorithm, including 
velocity estimation and frequency filtering. 

Apparently the first works to reproduce Hagedoorn’s 
graphical ideas date from the beginning of the 70’s, 
including French (1974). But the best reference related to 
its application to seismic data is referred to Schneider 

(1978). In this work only the process of migration of zero-
offset data is considered as the main objective in 2D and 
3D media. Inversion works – i.e., process of 
determination of seismic attributes at the same time as 
imaging – are first referred in works of Cohen and 
Bleistein (1979) and Clayton and Stolt (1981). In these 
works inversion is obtained through multifold integrals 
along several domains and through the Born-WKBJ 
scattering theory, by the use of Fourier transform 
techniques. Only after Beylkin (1985) migration/inversion 
theory took the shape it has today: Cohen et al. (1986), 
Sullivan and Cohen (1987), Bleistein et al (1987) and 
Bleistein (1987) are examples of works where inversion 
according to Beylkin’s idea is analyzed to 2D, 2.5D and 
3D media. The papers by Bleistein (1999), in the The 
leading edge, and the one by Bleistein and Gray (2000), 
in the Geophysical Prospecting, discuss how the 
graphical imaging of Hagedoorn was substituted by the 
Kirchhoff migration/inversion.  

The Beylkin (1985) approach of an inversion operator for 
the problem of a wavefield scattering is based on the 
imaging of discontinuities present in the propagation 
media considered, where pseudo-differential operators 
associated to Radon transform properties are used. 
Interpreting this inversion for the seismic case, Cohen et 
al (1986), Bleistein (1987) and Bleistein et al. (1999) 
considered the mapping of these “physical properties” as 
band-limited Dirac delta functions that are present, for 
example, in the modeling operators or when the seismic 
data is acquired. Thus, when defining an operator for the 
modeling (forward) problem, it must be inserted in its 
context some function that represents the discontinuities 
present in the media, such as the reflection coefficient or 
a perturbation in the velocity field. When these functions 
are inserted in the inversion equation, a mapping is 
associated to a discontinuity function in itself, by the use 
of the properties of the Dirac delta function, which permits 
to determine an approximate form of the weight-function 
of the inversion operator. This procedure introduces in the 
inversion scheme the famous Jacobian known as the 
Beylkin determinant, which represents the transformation 

of variables ξ1, ξ2, ω to k1, k2, k3. 

In this work we theoretically investigate the use of the 
Bleistein-Cohen formalism for an inversion operator in a 
set of seismic data formed by the superposition of 
Gaussian beams (GB’s). Disregarding terms related to 
the Beylkin determinant and the products of amplitude 
terms – the cases analysed so far by Bleistein (1987) – 
the resultant weight-function then derived here contains 
terms (i.e., functions) that are referred to the considered 
media. In the case of the GB’s, these terms are the 
function that transforms one surface integral into a 
volume integral and the weight-function of GB’s 
superposition integral. The latter weight-function agrees 
with the one derived in Ferreira (2006). After that, we then 
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compare the present migration/inversion operator to the 
operator derived by Albertin et al. (2004).  

Our derivation here shows that the two operators are 
equivalent as a local slant-stacking process, except for 
some terms regarding the weight-function of the GB’s, but 
they differ in the sorting of the data. Even so, we 
successively show that, after some small manipulations of 
the resulting operator and some a priori consideration, the 
GB operator yields Albertin’s true-amplitude operator.    

Gaussian beams and the inversion operator 

Following Bleistein (1987), who applied the Bleistein-
Cohen methodology to Kirchhoff-modeled seismic data, in 
what follows we advocate the same considerations using 
a superposition of GB’s (Červený, 2001), which also 
represents a high-frequency approximation of the seismic 
wavefield.  

The GB operator is an integral that represents in 3D a 
summation of (paraxial) rays that depart from the (point or 
line) source and, after traversing several layers of 
isotropic and smooth set of reflectors (i.e., one seismic 
system, see Bortfeld, 1989), are reflected over a specific 
surface, proceeding upwards, being detected by a dense 
coverage of geophones. These rays are summed along 
their emergence points and their contributions are 
registered in their vicinities, in a given reference 
geophone. This integral operator, in the frequency 
domain, is given by: 
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is the Gaussian taper function and )( ω,ψ Pξ
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represents a window of the seismic data )( ω,ψ ξ
r

 located 

inside the Fresnel zone aperture AP. So, the seismic data 
on the left hand side of Eq. (1) is a “copy” of itself, 
wherein each trace then carries the local stacking of 
paraxial events (amplitudes) reflected inside every 
Fresnel zone, for each seismic experiment between a 
source and a receiver, contained in the integration 
domain AP. The Gaussian taper function, centered at the 

reference-trace ξ
r

, weighs the relative contributions 

smeared along )( ξξ
rr

,
P

Bφ , inside each AP. 

In the original notation of Červený (2001), the integrating 
parameters are usually the take-off angles of the rays or, 
generally speaking, any ray parameters representing 
individual seismic rays. Here our interpretation of the 
integrating parameters is that they are projections of the 
area of the Fresnel zone in depth, around the reflection 
point, towards the acquisition surface. This mapping 
(Schleicher et al., 2002) is linear and centered around the 

beam that is supported by a central ray, containing its 
Fresnel volume. 

Ferreira (2006) used the operator described in Eq. (1) into 
the kernel of a true-amplitude, diffraction stack, 3D 
migration inversion operator. His interpretation of the 
modeling operator, based on the asymptotic ray theory, 
led to the definition of the weight-function of the GB 
operator as a function of the Fresnel volume elements of 
the seismic wavefield (Kravtsov and Orlov, 1980). This is 
considered as a physical interpretation of the GB weight-
function, since the former well-known interpretation given 
by Klimeš (1984) is only numeric. 

Here the inversion operator (Cohen et al., 1986; Bleistein, 
1987) to be considered is defined as 

.,ψFdi,bdβ ,i
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               (2) 

The quantities appearing in Eq. (2) are: )(ωF , the source 

spectrum; A, migration aperture; x
r
, vector-coordinates of 

a imaging point in depth; ξ
r

, source-receiver parameter 

coordinate vector; ω, the angular frequency; )( ξx
rr

,φ , 

diffraction traveltime (Huygens surface); and )( ω,ψ ξ
r

, the 

seismic data to be inverted. The philosophy of inversion is 
that inserting the representation of the seismic wavefield 
given by Eq. (1) into Eq. (2), this mapping should result in: 

)()(x)(
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Eq. (3) is a mapping of the reflectivities existing in the 
Earth where it is, i.e., over the reflector surfaces. Using a 
Born modeling operator, Cohen et al. (1986) derived the 
following weight-function for the inversion operator 
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in which )( ξx
rr

,h  is the absolute value of the Beylkin 

determinant, )(
2

x
r

c  is the square of the medium reference 

velocity and )( ξx
rr

,a  is the product of amplitudes among 

the triplets of the coordinates ξx
rr

, . If, by chance, the data 

to be inverted were of the Kirchhoff-type, one additional 
transformation should be included in the formalism, which 
transforms a surface integral into a volume integral, and 
the mapping represented by Eq. (3) should proceed 
normally.  

In the next section it is shown the formalism used to get a 
similar result as in Eq. (4), considering the use of Eq. (1). 

The weight-function for the GB data 

An inversion operator, in the Cohen-Bleistein approach, is 
represented by a volume integral in the 

variables T
, )( 21 ξξ=ξ

r

 and ω acting over a filtered version of 

the seismic data )( ω,ψ ξ
r

. This is represented in Eq. (2). It 

is considered that )( ω,ψ ξ
r

 must contain the reflectivity 

function )(x′
r

β  to map the wavefield via a Dirac 
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completness relation [see Eq. (3)]. And, last but not least, 
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 must represent one approximation that maps 

reflection points T
x,x )( 21
′′=′x

r
 over some reflecting surface 

and register them over an acquisition surface in positions 

parameterized by ξ
r

 [see Eq. (1)]. In the present case we 

consider that the seismic data is of zeroth order ray 

theory and represented by )(
)()(
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A priori Eq. (1) does not seem to be subtle to be used in 
the Cohen-Bleistein inversion method because the 
integral used to describe the seismic wavefield is written 
in projected surface coordinates. We then rewrite Eq. (1) 
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That follows from the decomposition of the transformation 
Jacobian into products between the projection of AF 
(Fresnel zone in depth) into a tangent plane centered at 
the reflection point and the projection of AF towards AP 
over the acquisition surface (Ferreira, 2006). Eq. (1) in the 
new coordinates is now given by 
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Eq. (6) was “deprojected” from the projected Fresnel zone 
AP, on the acquisition surface, towards the reflecting 
element AF, i.e., the Fresnel zone area in depth. 
Considering that a ray can be decomposed into two 
branches (Hubral et al., 1993), the amplitude function 
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to be viewed as products and sums of individual branch 
terms, respectively. We have then a complete picture of 
ray tracing and suitable components for the inversion 
scheme we are claiming here. In the decomposition of the 

amplitude term above, )( ξx
rr

,R ′  is the reflection coefficient. 

To transform Eq. (6) into a volume integral, we must 
introduce a function ))(()( 213 x,xx Σ−δ=′γ x

r
 with support only 

over the Fresnel zone AF portion of the reflector 

represented by )( 21 x,xΣ . The multiplication of this singular 

function with the reflection coefficient, e.g. 

)()()( xξxx ′γ′=′β
rrrr

,R , gives rise to the reflectivity function we 

were searching for (Cohen et al., 1986) and that is the 
discontinuity mapped by the present inversion scheme. 
With these considerations, Eq. (6) becomes 
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The physical meaning of Eq. (7) is clear now. It simply 
states that given the Fresnel volume for a (central) 
seismic ray, the cross-sections of this volume that happen 
to be located over reflector surfaces and that are 
intercepted by the volume when the central ray reflects 
over some point on these surfaces determine the Fresnel 
zone AF for the reflection point at R. The volume integral 
evaluates the support of its third coordinate x3 only when 

surface-function )( 21 x,xΣ  is equal to AF, and this collapses 

the volume integral into a surface integral. Thus, only the 
region belonging to AF contributes then to the observation 

in ξ
r

. The mapped reflectivity )(x′β
r

 determines then the 

physical property of only the area AF and not solely that of 
the reflection point in R. 

Since all the terms in Eq. (7), including the reflectivity-

function )(x′β
r

, are functions only of T
x,x )( 21
′′=′x

r
, the kernel 

of the inversion in Eq. (2) follows the paths described in 
Cohen et al. (1986). But there is one difference that must 

be taken into account: the oscillatory factor )(Be
x′φω
r

i , along 

with the factors including the Gaussian taper function and 
the square root of the determinant of the Fresnel zone 
matrix, cannot be simply eliminated by the weight-function 

)( ξx
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,b . In this case the only possible result for the weight-

function on the inversion is 
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This equation again grants that the mathematical 
manipulation described so far transforms Eq. (2) into a 3D 
Dirac delta function. But, this time, Eq. (3) will be of the 
form 
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are only function of T
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. Eq. (9) means that we 

have obtained a weighted inversion and that there must 
be one controlling factor for this weigh. The answer for 

this dilemma is in the oscillatory factor )(Be
x′φω
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i , which is 

function of the knowledge of the slowness vector p
r
 and 

of the Fresnel zone matrix )(xH ′
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F . The choice of one of 

these two controlling factors precludes the use of the 

other. While vector p
r

 controls the illumination, the matrix 
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F  is related to the size of the Fresnel zone in depth, 

a frequency-dependent factor. Although similar in physical 
meaning, the approach differs for the inversion scheme. 
But since our aim is to compare it to the inversion 
operator studied by Albertin et al. (2004), the choice 

remains with vector p
r

 as key controlling factor. Thus, Eq. 

(9) must be rewritten as 
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The final inversion operator then becomes 
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which means that the transformation in Eq. (1) must now 
be viewed as a local slant stacking of the seismic data in 
the AP domain of integration with respect to the controlling 

factor p
r

. The consequences for the controlling factor 

considering the frequency-dependent Fresnel zone matrix 

)(xH ′
r

F  will not be discussed here. 

Another consequence of this whole process of an 
inversion is the fact that the weigh-function chosen for the 
GB operator in Eq. (1), introduced in Ferreira (2006), is 
corrected when related to the elements of the Fresnel 
volume raytracing.  

Comparison with the inversion operator of Albertin et 
al. (2004) 

Albertin et al. (2004) describe a ray-based beam inversion 
theory for common-offset data using a true-amplitude 
imaging GB operator. Their approach starts with a 
Kirchhoff scattering formula for the forward-modeling 
operator using the Green’s function theorem (Morse and 
Feshbach, 1954). In their case, the Green’s functions are 
expanded into Gaussian beams as follows 
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where ã and φS are, respectively, the complex amplitude 
and traveltime of the beam for the source S location and 

T
p,p )( 21=p

r
 is the take-off ray parameter vector. Inserting 

Eq. (12) for the source – and, similarly, its contribution GR 
for the receiver – into the forward-modeling equation, 
results in a general scattering equation that considers the 
contributions of plane-waves from sources and receivers. 
The data is then sorted in common-offset parameters and 
local slant stacked, and the slowness integrals evaluated 
as steepest descents, giving rise to a forward-scattering 
equation for a single beam center p-component of the 
wavefield (in their notation) given by 
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in which Reφ  refers to the real part of the total traveltime 

φ  for a fixed h, and the amplitude term is the product of 

common-offset amplitudes. The authors assert that Eq. 
(13) should be compared to equations (20)-(22) of Hill 
(2001), except for amplitude factors. The adjoint (or 
pseudo-inverse, see Beylkin, 1985) of Eq. (13), following 
the lines of Cohen et al. (1986) and Bleistein (1987), is 
the asymptotic true-amplitude beam migration/inversion 
operator. 

Analysis of the kernel for the Cohen-Bleistein inversion for 
Eq. (13) shows that a exponential factor related to the 
imaginary part of the traveltime 

Imφ  smears the 3D Dirac 

delta function, and in being so, it must be integrated over 
the p-components of the common-offset ray in order to 
grant the inversion result. This fact constrains data to be 

locally slant stacked prior to diffraction stacking. Thus, in 
Albertin et al. (2004) notation, the migration/inversion 
equation is 
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is the weight-function and in which )(GB ξx
rr

,h  is a version 

of the Beylkin determinant for the common-offset case. 
Comparing Eq. (14) to Eq. (11) it is obesrved that the two 
inversion operators present the same structure, differing 
only in their weight-functions, specially that in Eq. (11) the 
final weight-function does not present the gradient of the 
real part of the total traveltime. 

Conclusions 

We have theoretically investigated the Bleistein-Cohen 
inversion procedure (Bleistein, 1987) of a common-offset 
operator in which the seismic data is viewed as a local 
slant stack around a reference trace bounded by the 
projected Fresnel zone (PFZ) of the simulated seismic 
experiment. The idea used followed the approach studied 
in Ferreira (2006), in which the data to be migrated is first 
beam stacked along a Huygens surface (Schleicher et al., 
1993), using relative traveltime surfaces or curves in each 
point of the diffraction curve, previously to mapping the 
amplitudes to depth. This approach is entirely carried out 
in the time domain, in contrast to the present procedure, 
which is carried out in the frequency-wavenumber domain 

and partially interpolated through the τ-p (slant stack) 
domain.  

The approach of using the PFZ in Ferreira (2006) 
considered elements of the Fresnel volume of a seismic 
wavefield as boundary condition for the use of Gaussian 
Beams (GB’s) in the seismic migration operator. The 
radius of PFZ acts as constraint for the half-beam width of 
the GB to be considered for each emergent paraxial 
wavefield of each geophone. In previous approaches 
(see, e.g., Hill, 1990 and Hill, 2001), in order to consider 
such situation, the data must be decomposed in gathers 
that simulate a superposition of GB’s and that locate 
seismic events according to their dips present in the 
common-offset section and around every midpoint. The 
idea here is precisely the same, although seen by a 
different point of view, using the Bleistein-Cohen 
methodology.  

Another difference of the present approach regarding the 
one adopted in Ferreira (2006) is that presently there is 
an explicit sum (i.e., integration) over seismic dips 
(slowness) instead of a sum over frequency values 
(Ferreira, 2006). The latter was necessary in order to 
modify the curvature (i.e., the Hessian) of the traveltime 
approximation of the relative traveltime curves along the 
diffraction (Huygens) curve. This step is not necessary 
when dealing with slant stackings.  
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When inserted in the procedures considered in Cohen et 
al. (1986) to find an inversion operator for the seismic 
case (Beylkin, 1985), the data must be considered to be a 
superposition of GB’s (Ferreira, 2006), so that the 
Bleistein-Cohen inversion machinery must act over 
events that were previously projected towards the 
acquisition surface and were stacked in reference traces 
– i.e., every trace along a common-offset section. But to 
consider these paraxial contributions and relate them to 
points in depth they must be “deprojected” back to depth 
variables. When this is applied, the operator is redefined 
as an integration over the cross section of the reflector in 
depth and restricted by the Fresnel zone around the 
reflection point. Since this is the only region of the 
reflector to influence the amplitudes in the reference 
geofone, its mapping is restricted to its Fresnel volume. In 
that between the Bleistein-Cohen methodology comes in, 
and the new inversion may be seen again as a volume 
mapping (Cohen et al., 1986). Thus the result is a 
weighted inversion with respect to every plane wave 
component and that must be summed (or integrated) 
along all slowness vectors in order to produce the 
complete image. 

When compared to Albertin et al. (2004) inversion 
operator, it is noticed that Eq. (11) is analogous, differing 
only in terms in the structure of each weight-function. 
Figure 1 summarizes all ideas described along the 
present paper. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Acknowledgements 

The first author would like to thank to Agência Nacional 
do Petróleo (ANP/Brazil) for the permission to publish this 
work. He also extends his acknowledgements to the 
Exploration Superintendence (SEP), for providing its 
workstation environment, where presently the ideas 
presented in this paper are being implemented. 

References 

Albertin, U.; Yingst, D.; Kitchenside, P., 2004. True-
amplitude beam migration. In: 74 th SEG Int. Exp. 
Mtg., Denver. 

Beylkin, G., 1985. Imaging discontinuities in the inverse 
scattering problem by inversion of a causal 
generalized Radon transform. J. Math. Phys., 26, 99-
108. 

Bleistein, N., 1987. On the imaging of reflectors in the 
Earth. Geophysics, 52, 931-942. 

Bleistein, N., 1999. Hagedoorn told us how to do 
migration and inversion. The Leading Edge, 18, 918-
927. 

Bleistein, N.; Cohen, J. K.; Hagin, F. G., 1987. Two and 
one-half Born inversion with an arbitrary reference. 
Geophysics, 52, 26-36. 

Bleistein, N.; Cohen, J. K.; Stockwell, Jr., J. W., 1999. 
Mathematics of multidimensional seismic inversion. 
Spring-Verlag, New York, 375p. 

Bleistein, N.; Gray, S. H., 2000. From the Hagedoorn 
imaging technique to Kirchhoff migration and 
inversion. CWP, CSM, Report 363. 

Bortfeld, R., 1989. Geometrical ray theory: rays and 
traveltimes in seismic systems (second-order 
approximations of traveltimes). Geophysics, 54, 342-
349. 

Červený, V., 2000. Seismic ray theory. Cambridge 
University Press. 

Červený, V., 2001. Summation of paraxial Gaussian 
Beams and of paraxial ray approximations in 
inhomogeneous anisotropic layered structures. In: 
Seismic Waves in Complex 3D Structures. Report 10, 
Charles University, Prague. 

Clayton, R. W.; Stolt, R. H., 1981. A Born-WKBJ inversion 
method for acoustic reflection data. Geophysics, 46, 
1077-1085. 

Cohen, J. K.; Bleistein, N., 1979. Velocity inversion 
procedure for acoustic waves. Geophysics, 44, 1077-
1085. 

Cohen, J. K.; Hagin, F. G.; Bleistein, N., 1986. Three-
dimensional Born inversion with an arbitrary 
reference. Geophysics, 51,1552-1558. 

Ferreira, C. A. S., 1986. Modified prestack Kirchhoff 
depth migration using the Gaussian Beam 
operator. Universidade Federal do Pará (UFPA). 
Doctor thesis (in Portuguese). 187p. 

French, W. S., 1974. Two-dimensional and three-
dimensional migration of model-experiment reflection 
profiles. Geophysics, 39, 265-277. 

Hagedoorn, J. G., 1954. A process os seismic reflection 
interpretation. Geophysical Prospecting, 2, 85-127. 

Hill, N. R., 1990. Gaussian beam migration. Geophysics, 
55, 1416-1428. 

Figure 1 – The seismic experiment including elements of 
the Fresnel volume, including the Fresnel zone in 
depth and its projected counterpart along the 
acquisition surface. 



TRUE-AMPLITUDE MIGRATION OPERATORS 
________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 

Eleventh International Congress of the Brazilian Geophysical Society 

6 

Hill, N. R., 2001. Prestack Gaussian beam depth 
migration. Gophysics, 66, 1240-1250. 

Hubral, P.; Schleicher, J.; Tygel, M.; Hanitzsch, C., 1993. 
Determination of Fresnel zones from traveltime 
measurements. Geophysics, 58, 703-712. 

Kravtsov, Y. A.; Orlov, Y. I., 1980. Geometrical optics of 
inhomogeneous media. Springer-Verlag. 

Klimes, L., 1984. Expansion of high-frequency time-
harmonic wavefield given on an initial surface into 
Gaussian Beams. Geophys. J. R. astr. Soc., 79, 105-
118.  

Morse, P. M.; Feshbach, H., 1954. Methods of 
theoretical physics. McGraw-Hill Co. 

Schleicher, J; Tygel, M.; Hubral, P., 1993. 3D true-
amplitude finite-offset migration. Geophysics, 58, 
1112-1126. 

Schleicher, J.; Hubral, P.; Tygel, M.; Jaya, M. S., 1997. 
Minimum apertures and Fresnel zones in migration 
and demigration. Geophysics, 67, 183-194. 

Schleicher, J.; Tygel, M.; Hubral, P., 2002. True-
amplitude seismic imaging. SEG monograph. 

Schneider, W. A., 1978. Integral formulation for migration 
in two and three dimension. Geophysics, 43, 49-76. 

Sullivan, M. F.; Cohen, J. K., 1987. Prestack Kirchhoff 
inversion of common-offset data. Geophysics, 52, 
745-754. 

  

 


