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Abstract 
 
Coherent noises are those that appear through a 
systematic way and swell noise is a kind of coherent 
seismic noise. This happens during the marine seismic 
acquisition and is generated basically by the motion of the 
ship, cable depth controllers, or sea surface waves. For 
the swell noise analysis and attenuation we used a one 
dimensional wavelet transform, in the sense that it 
operates on single traces, to apply a time-frequency 
domain filter. The shifting (time) and level (frequency) 
dependent soft-threshold is estimated using a method 
based on Bayes’ Rules. Using this proposed methodology 
for synthetic data analysis the results were satisfactory. 
When real seismic data is used the results show good 
agreement due to the algorithm adaptive structure. The 
noise is removed considerably and the signal doesn't 
loose the interesting information, validating the proposed 
model. As the algorithm makes the threshold estimation in 
function of the scale and for each trace time interval, nine 
threshold values are calculated for each trace. Therefore, 
it is possible to reduce the noise for different signal-to-
noise ratios (SNR) along each trace. The noise free 
traces don't change, because in those cases the 
threshold tends to be zero making possible the perfect 
signal reconstruction. However, when the SNR tends to 
be one or the noise and signal amplitude and frequency 
are similar their coefficient variances tend to be close 
causing a threshold estimation enough to mute the signal. 
In agreement with the increasing demand for offshore 
exploration, also driven by 4D seismic acquisitions, the 
swell noise will be a frequent problem, because in order 
to achieve a good geologic model all the distortions 
generated by the data acquisition should be attenuated. 
 
Introduction 
 
During the marine seismic acquisitions, the swell noise is 
a type of coherent noise generated by motion of the ship, 
cable depth controllers, or sea surface waves. Sometimes  
the swell noise is so strong that we couldn’t identify the 
signals from the data. In agreement with the increasing 
demand for offshore exploration the swell noise has been 
researched, besides to predict the noise behavior 
depending on the environmental conditions and survey 
design, it can be seen in Martin et al. (2000), Mougenot et 
al. (2004) e Shepherd and Mcdonald (2004). 
According to Yilmaz (2000) a low-cut filter often removes 
the swell noise from shot records. Some work were 
developed to coherent seismic noises attenuation using 
wavelet based techniques, as Duval and Galibert (2002)  

and Yu and Whitcombe (2008). D
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One dimensional discrete wavelet 
 
Mathematically speaking, the wav
convolution of the wavelet function
however, the wavelet and the signal 
a low value of the transform is obtai
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The discrete wavelet transform (DWT) divides the signal 
in high scales and low scales components, called 
approximation and details coefficients, respectively. The 
approximation coefficients return the low frequency 
component of the signal, and the details correspond to 
high frequency. This decomposition was done up to the 
second level to increase the frequency resolution and is 
represented as a binary tree with nodes representing a 
sub-space with different time-frequency localization. The 
tree is known as a filter bank, where a data downsampling 
is used during the convolution for each level. An example 
for a data with 1000 samples is shown in Figure 1 to 
illustrate this procedure. 
 
One type of processing in the wavelet domain is the 
signal reconstruction rejecting the coefficients with low 
values, corresponding to the incoherent part of the signal, 
or the noise. The noise attenuation, or denoising, can be 
defined as fallows. 
 
If S(t) is the noisy signal 
 

n(t)x(t)S(t) +=  
 
where  is the free noise data, and  the additive 

noise. Choosing an operator 

x(t) n(t)
)(.,τD  to represent the 

denoising, in the threshold τ , an operator  to 
represent the forward wavelet transform and an operator 

 to represent the inverse wavelet transform, we 
can simplify this procedure as fallows 

(.)W

(.)1−W

 
)(SWY =  

),(* τYDY =  

)()(' *1 YWtS −=  
 
where  is the estimated free noise data. As it can 
be seen, after the wavelet decomposition the coefficients 
are filtered, this filter needs to be previously defined, and 
it calls wavelet shrinkage. Then carry out the inverse 
transform to reconstruct the signal. In the next section will 
be discussed the threshold estimation for wavelet 
shrinkage. 

(t)S'

 
Threshold estimation for wavelet shrinkage 
 
After the wavelet decomposition, we can change or 
remove some coefficients, after that, do the signal 
reconstruction. We can set groups of coefficients to zero 
or set selected individual coefficients to zero. Also, we 
can reduce the magnitudes of some coefficients rather 
than set then to zero. There are many methods for 
selecting and modifying the coefficients, the two most 
popular are soft and hard thresholding. Those coefficients 
above the threshold are deemed to correspond to the 
coherent part of the signal, and those below the threshold 
are deemed to correspond to the random or noisy part of 
the signal. Soft thresholding is of the form 
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where all coefficients below the threshold, τ , are set to 
zero and all the coefficients whose magnitude is greater 
than  are shrunken towards zero by an amount τ . The 
threshold can, for example, be a constant value applied to 
the coefficients across all scales, some of the scales, or 
its value can vary according to scale. The last method is 
called level dependent thresholding.  
 
There are some methods to the threshold estimation, for 
example: Donoho and Johnstone (1994a), Kaur et al. 
(2003), Miao and Cheadle (1998), and Nason 
(1995). In this article was estimated a level dependent 
soft threshold using a method called BayesShrink, which 
proposes an adaptive data-driven threshold for signal 
denoising via wavelet soft-thresholding that was derived 
in a Bayesian framework, based on prior information 
about the noise. This information is the noise coefficient 

variance, , that needs to be estimated first. Recall the 
observation model is , with  and  
independent of each other. In summary, this method uses 
this idea: 

2σ
n(t)x(t)S(t) += x n

 
If , where  is the variance of 222 σσσ += XY

2
Yσ Y . 

Thus  

X
Xb σ

σστ
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where )0,max(ˆ 22 σσσ −= YX . In the case that 

, 22
Yσσ ≥ Xσ̂  is taken to be zero. That is,  )ˆ( Xb στ is 

∞ , or, in practice, ( )YXb max)ˆ( =στ and all 

coefficients are set to zero. This happens at times when 

 is large. To summarize, this method performs soft-
thresholding, with the data-driven, subband-dependent 
threshold. In the next section the algorithm structure for 
the synthetic and real data analysis will be displayed. 

2σ

 
Synthetic and real data processing 
 
The DWT was applied, with two decomposition levels, in 
three traces. A selected real trace, , and two synthetic 
traces. One of these synthetic traces is the one that 
contains only noise. To achieve this goal, a data sampling 
is done in , before the first break, where there is only 
noisy. With this sampling, a trace with the same length of 
the original data is created, , just repeating this 
sample, that will be called as synthetic noisy trace. 
Choosing a neighboring noise free trace, , we 

created a synthetic trace, as fallows 

reT

reT
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In summary, for the wavelet analysis will be used , 

 and . Once, we will show all the procedures for 

the synthetic data analysis, and then in the end of this 
section the real data analysis will be discussed. 

reT

syT noT

 
To execute the time-frequency domain analysis, the 
wavelet coefficient vector of each trace was divided in 
three parts, following the same idea; the first time interval 
correspond to the initial time interval, until de first break, 

, para , where  is the first break 

index. After  the trace is divided in two parts, with 

e 

, where  is the 

length of T(i) . Due to downsampling procedure this time 

sampling is adjusted for each scale. For each  and 

 interval the approximation and details coefficient 
variance is estimated. Figure 2 display the approximation 
and detail coefficient histograms, in agreement with the 
time intervals, of the synthetic trace and synthetic noisy 
trace. We can see that for the first part, , the coefficient 
distribution, between this two traces are similar and it 
should be. For the second and third parts,   and , the 
approximation coefficient distribution are so different, 
confirming what  said, that the swell noise is well 
represented in the detail coefficients. Using the 
BayesShrink method, the shrinkage was applied. After the 
shifting and level dependent soft-thresholding, 

T(i) fb1 n1,2,...,i = fbn

fbn
 )/2]n-(n[n ...,  1,ni fbfb2 ++=

n ..., 1,)/2]n-(n[nni fbfb3 +++= n

syT

noT
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( )nm
Xb

,σ̂τ , the synthetic trace is reconstructed, 

.Table 1 shows , \sigma^{2}, 

 and 

) (Y W (t) S' *
nm,

-1= 2
Yσ

2σ Xσ̂  for each scale and time interval, ,   

and . Figure 3 displays the coefficient vector for all 
scales and the dashed line correspond to the threshold 
value applied for each time interval. Figure 4 shows a 
crossplotting of  and , on the top, and the 

residual, on the bottom. 

1i 2i

3i

syT '
syT

 
Using the same methodology for the real noisy trace, 

, it can be seen in Figure 5, Figure 6, Figure 7 and 
Table 2, that the proposed model for the synthetic data 
analyses agree with the real situation. In summary, to use 
it in a real seismogram, will be necessary to set the 
algorithm to analyze each trace. For each trace, , a 

noisy synthetic trace, , needs to be created. After the 
transform and the signal processing, each trace is 
reconstructed. 

reT

reT

noT

 
Results and discussions 
 
In order to better visualize and compare the results, in 
Figure 8 shows the results for the synthetic trace analysis 

and Figure 9 shows the results for the real noisy trace, 
according to the time intervals, ,   and . 1i 2i 3i
 
The proposed algorithm applies this methodology in a real 
seismogram, analyzing each trace. The results can be 
seen in Figure 10. A seismogram section highlighted in 
Figure 10(a) was selected for a better view of the 
processing results. Figure 11 shows the selected section, 
(a), the processed section, (b), and the residual, (c).  
 
When the noise and signal, amplitude and frequency, are 
similar the algorithm tends to calculate a thresholding 
value enough to cut all the signal, but it happens when 
the swell noise is so strong that we can't identify the 

signal from the trace. Thereby, , in that case 
the estimated signal standard deviation tends to be zero, 

22 σσ ≈Y

0ˆ ≈Xσ , consequently ( )YXb max)ˆ( ≈στ . Figure 

12 shows all the traces that was muted. 
 
In the noise free traces, the algorithm doesn't change the 
signal, therefore  is generated with its initial time 
sampling, where there is no signal and noise. So the 
wavelet transform coefficients will be zero, or very close, 

then , that is 

noT

02 ≈σ 0)ˆ( ≈Xb στ . Thereby, the signal 
coefficients won't be modified before carrying out the 
inverse transform. 
 
Just to help in the coefficient interpretation, we applied 
the continuous wavelet transform in the noise free trace, 
noisy real trace, synthetic trace and the trace number 
319,  which the noise and signal, amplitude and 
frequency, are similar. In Figure 13 can be seen that the 
coefficients related to the swell noise are placed in the 
low scales of the wavelet and in  coefficients the 
noise is well represented in the high scales. 

319T

319T

 
E. Kragh (2002) showed that the reducing tension down 
the streamer gives an increasing in movement toward the 
tail end. This movement is coupled to the swell. In Figure 
10(a) we can see that the last traces shows more swell 
noise. As we have shown the swell noise is placed in the 
low scales of the wavelet transform and starting from this 
idea it was possible to prove that this situation can be 
shown using the details coefficient variance. When DWT 
is applied in the initial time interval, until the first break, of 
each trace and is computed detail coefficient variance for 
the first and second decomposition level, it can be seen 
that the last traces show high variances, it is shown in 
Figure 14. 
 
Conclusions 
 
Using one dimensional DWT for seismic data containing 
swell noise, we characterized and attenuated the noise in 
both synthetic data and real data. Due to the algorithm 
adaptive structure, nine threshold values were computed, 
for each trace, being able to reduce noise for different 
SNR. Notice that the noise free traces don't loose the 
interesting information, because the threshold tends to be 
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zero, making it possible that the signal can be 
reconstructed without loss. This methodology can be 
applied in any type of sort, thus the algorithm processes 
each trace independently on the geometry acquisition. 
The results were suitable and this proposed methodology 
showed itself robust. In real seismograms, the noise is 
considerably removed and the signal doesn't loose the 
interesting information, validating the proposed model. 
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Table 1: Synthetic trace results. Synthetic trace 
coefficient variance, , synthetic noisy trace 

variance, , estimated standard deviation of the 
signal, 

2
Yσ

2σ
Xσ̂ , and the threshold value applied in each 

subband and for each trace time interval, bτ . 

 
 
Table 2: Selected real trace results. Selected real 
trace coefficient variance, , synthetic noisy trace 

variance, , estimated standard deviation of the 
signal, 

2
Yσ

2σ
Xσ̂ , and the threshold value applied in each 

subband and for each trace time interval, bτ . 
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Figure 1: Illustration of wavelet decomposition, 
processing and wavelet reconstruction. 
 

 
Figure 2: Coefficient histograms, white for  and 

blue for . 
syT

noT
 

 
Figure 3: Synthetic trace wavelet coefficients for each 
scale. (a) Approximation coefficients of the 2nd 
decomposition level. (b) Detail coefficients of the 2nd 
decomposition level. (c) Detail coefficients of the 1st 
decomposition level. The dashed lines correspond to the 
threshold value for each time interval. 
 

 
Figure 4: Synthetic trace analysis results. 

 

 
Figure 5: Coefficient histograms, white for  and blue 

for . 

reT
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Figure 6: Selected real trace wavelet coefficients for each 
scale. (a) Approximation coefficients of the 2nd 
decomposition level. (b) Detail coefficients of the 2nd 
decomposition level. (c) Detail coefficients of the 1st 
decomposition level. The dashed lines correspond to the 
threshold value for each time interval. 
 

 
Figure 7: Selected real trace analysis results. 
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Figure 8: The synthetic trace, , and the processing 

result, . 
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Figure 9: The noisy real trace, , and the processing 

result, . 
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Figure 10: (a) Real seismogram. (b) Processed 
seismogram. (c) Residual. 
 

 
Figure 11: The seismogram highlighted section in Figure 
10(a). 
 

 
Figure 12: On the top is shown muted traces before the 
processing, and on the bottom, those traces after the 
processing. . (a) k=255. (b) k=319. (c) k=327. (d) k=640. 
 

 
Figure 13: Normalized coefficients of the continuous 
wavelet transform. From the top to bottom, free noise 
trace, selected noisy real trace, synthetic trace and trace 
number 319. 
 

 
Figure 14: Detail coefficient normalized variance for the 
second decomposition level, (a), and the first 
decomposition level (b). It was done for the initial time 
interval, until the first break, of each trace. 
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