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Abstract 
 
Is it reliable to depth convert seismic time interpretation 
using seismic velocity data?  Do these velocity data add 
value to the depth conversion? 
This paper is an attempt to answer the question and to 
propose a geostatistical model based on Bayesian 
approach. The proposed methodology is applied to real 
and test case studies to demonstrate the ability to add 
value to the depth conversion by properly using seismic 
velocity models. 

Introduction 
 
Geostatistical approach for time-to-depth conversion of 
seismic horizons is often used in many geo-modelling 
projects in oil industry and in various contexts.  From a 
geostatistical point of view, the time-to-depth conversion 
of seismic horizons is a classical estimation problem 
involving one or more secondary 

variables { }LlSxSl ,1,1)( 0 ==→ , ( 1S = time-
migrated horizon in time units) and well markers 
corresponding to the interpreted horizon 

{ }NixZ i ,.1)( =→  (in depth units). 
Different kriging methods are used for this estimation 
problem such as Simple Kriging (SK), Kriging with 
External Drift (KED). As all kriging methods, they provide 
the depth mapping and an estimation of associated 
uncertainty. 
These kriging methods are based on the dichotomy of the 
spatial random variable )(xZ (Matheron, 1963) in two 

parts the mean )(xm and the residual )(xZ R . The 
mean function is generally done by a linear combination: 
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In function of available data we can have three different 
scenarios for defining the trend model: 

1. No seismic velocity involved (M0 case): 
)(1)( 0 xTbbxm ⋅+=  

2. Un-scaled seismic velocity model involved (M1 
case): 

)()( 10 xZbbxm seis⋅+=  

3. Scaled seismic velocity model (M2 case) 
)()()()( 210 xZbxZxYbbxm seisseis ⋅+⋅⋅+=  

 
In the case of SK the mean )(xm  is assumed to be 
known and defined as a time-depth regression fit based 
on well markers.  In the case of kriging with external drift  
(Wackernagel, 1995), the drift coefficients are evaluated 
in the KED process (called “geo-regression”)  
 All these kriging based estimators are of course 
conditioned by the data and are model-driven but the only 
tuning parameter is the variogram model. The drift 
coefficients are either fixed or estimated.  However we 
can have the a-priori information about the velocity model 
and for that reason, the Bayesian approach is well 
adapted to provide a framework for the integration of this 
a-priori knowledge.  

Estimation using Bayesian approach 
 
In the linear Bayesian approach we replace the set of 
regression linear coefficients lb  by random variables lB  
characterised by a known a-priori join distribution. The a-
priori knowledge of time-depth relationship or the prior 
distribution of drift coefficients in Gaussian case can be 
fully determined by two first moments: the prior 
expectation vector ][ ll BE=µ and associated 

covariance matrix lkkl BBCov σ=),( . The Bayesian 
extension of KED provides an estimator which is more 
general and introduces the notion of uncertainty of the 
mean (or trend) prediction. The kriging formalism is 
generalised thanks to a Bayesian inference and provide a 
local estimation with an associated variance of estimation 
and posterior distribution of drift coefficients (Omre 1987, 
Omre and al. 1989). The Bayesian Kriging system is then 
defined as: 
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Where )( jiBZ xxC −  is the conditional covariance 

which can be modelled from experimental variogram of 
residuals (the trend is computed using prior). 
Considering the Gaussian distribution of drift coefficients, 
the first two moments of posterior distribution can be 
obtained by the following equations: 
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Where:µ is the vector of drift coefficients, S is the drift 

matrix )]([ ji xSS =  (seismic time or seismic depth at 

well markers), ][ ijσ=Σ  is the matrix of the covariance 

of drift coefficients, C  is the covariance matrix between 
data points and Z is the vector of sample depth 
measurements.  
The Bayesian Kriging (BK) stands between Simple 
Kriging (SK) and Kriging with external Drift (KED). In the 
case that our knowledge of drift coefficients is very poor 
(big variance or large prior distribution of drift coefficients) 
the BK converges to the KED and in the case of good 
knowledge of these coefficients (low variance or narrow 
distribution of drift coefficients) the BK converges to the 
SK. This property of BK provide an general unified 
probabilistic model for time to depth conversion that can 
be applied in three mentioned M0, M1 and M2 scenarios 
and as all kriging estimators Bayesian Kriging provide 
also a quantification of the depth uncertainty by the 
kriging variance of estimation. 
Another important advantage of the use of Bayesian 
approach is the fact that the mathematical model 
accounts for prior knowledge of velocity model. This prior 
knowledge serves as a geophysical supervision of 
estimator. That is very important in the case of limited 
number of wells.  

Example: M0 case 
 
The application of BK for time-to-depth conversion was 
tested in several case studies and provided very 
promising results. In the extreme cases of our prior 
knowledge of drift coefficients we found the same results 
as KS or KED. The result of a test case study is shown 
(Fig. 1). 

 
a) Base-map of well locations 

 
b) Seismic horizon 

 
c) Time-Depth regression. 

 
d) Result of TD 

conversion by BK 

Figure 1: Application of Bayesian Kriging for 
time-to-depth conversion of a seismic horizon 

Simulation based on Bayesian approach 
 
Bayesian Kriging is used not only for estimation purposes 
but it also can be implemented in simulation algorithms. 
The Bayesian simulation approach provides a 
quantification of variability of depth integrating the 
uncertainty of our prior knowledge of the trend.  
 

 
a) realisation #1 

 
b) realisation #2 

 
c) mean of 40 realisations 

 
d) Section of several 
simulated depths and 

mean 

Figure 2: Application of simulation based on 
Turning Bands and Bayesian Kriging (test case) 

 
Among of different possible algorithms, our choice was 
the combination of turning bands with BK which provides 
an accurate and fast simulation method adapted not only 
for regular grids but for any kind of mesh. The spatial 
statistics of simulated depths are fully verified in several 
real and test case studies (Fig. 2).   
 
M1 and M2 case (seismic velocity involved) 
 
The first step before embarking into depth conversion 
using seismic velocity fields consists in identifying 
remaining processing artefacts to be filtered out and 
filtering these denser and denser velocity data sets: a 
simple procedure based on factorial kriging is proposed 
and illustrated on a real data case; a specific output of 
factorial kriging is the Spatial Quality Index (SQI®) cube 
which provides a handy tool to pinpoint anomalies in the 
available velocity data cubes. The filtering parameters are 
easily controlled and fine-tuned. Artefacts and filtered 
data can be visualized and interpreted. Ghosts of 
enhancement strategy grids currently used in high density 
automatic picking algorithm are easily identified and 
removed in this first step.  
Unfortunately, seismic velocities, even properly filtered, 
diverge from well velocity. The approach proposed in this 
paper consists in introducing a scaling factor (the R 
factor) into a classical geostatistical tool applied for years 
in time to depth conversion. Indeed Bayesian kriging is 
perfectly adapted to this type of non stationary bivariate 
problem: in its classical application, a primary variable 
(marker depth in well) is kriged using a secondary 
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variable (seismic time or seismic depth) as a shape 
factor, namely the external drift.  
This robust geostatistical tool is revisited here to introduce 
a ratio between well and seismic velocity as a second 
external drift. In many cases as shown in this real case 
example, the strong anti-correlation observed between 
this ratio (the R factor ) and the seismic velocities 
damages the correlation between well velocities and 
seismic velocities and leads to the wrong decision to 
ignore seismic velocities in the preferred time to depth 
conversion approach. The R factor used as a second 
external drift can be related to the introduction of a 
laterally varying correction for anisotropy, and\or 
compaction. It can be intuitively linked to the depth of 
burial of a classical V0, K approach.  
The introduction of a second external drift captures well 
identified pitfalls of time to depth conversion such as 
ignoring anisotropy or surface reference for burial. 
A flowchart has been developed and is proposed to 
evaluate the effect of seismic velocity on depth models 
resulting from different approaches covering the usual 
range of practical cases: seismic time as external drift, 
seismic depth as external drift, R factor with a second 
external drift. Each approach is illustrated on a real case 
study with blind tests performed to highlight the benefits 
and limitation of the R factor approach. 

 

Simple case study 

Different scenarios of prior velocity model have been 
tested in a simple study case in order to quantify the 
quality of estimated depth. For that a simple case study is 
presented with a limited number of wells (Only 10 wells in 
our case) (Fig 3). 

 
Figure 3: Seismic interpreted horizon in time 

 

A first depth map (un-conditioned by the well markers) 
was obtained by a simple product of interpreted time and 
filtered seismic velocity (Fig, 4, 5). The relationship 
between true depth and seismic measurements (time and 
depth) was obtained by a simple regression analysis on 
well markers (Fig 6).  In order to define the secondary drift 
(M2 case) the relationship between Scaling factor and 
seismic velocities was also defined (Fig 7). The Figures 8, 
9 and 1à shows the resulting depths for M0 M1 and M2 
case. 

 
Figure 4: Seismic velocity map after QC end 

filtering 

 

 

 
Figure 5: Seismic horizon depth map 

 

 

 
 

Figure 6: Well data analysis SeismicTime -True 
Depth and Seismic Depth-True Depth regression 

 

H1 - Well data analysis 
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Figure 7: Well data analysis of R factor 

 

 

 
Figure 8: Resulting depth using seismic time as 

external drift (M0 case) 

 

 

 
Figure 9: Resulting depth using only seismic 

depth as external drift (M1 case) 

 

 
 
 

Figure 10: Resulting depth using seismic depth 
and a second external drift (M2 case) 

 

Uncertainty management 

Well depth conditional simulations with external drift 
provide a set of realisations of the depth surfaces. All 
simulations are conditioned to the depth well markers ( eg 
here 10 wells, Fig. 11) and are consistent with a given 
scenario approach of depth conversion method (here M2 
scenario Fig 11).  

 

 
 

Figure 11: Application of simulation. 
 
In the case of Bayesian approach the base case model 
can be supervised by the prior knowledge of velocity 
model. The choice of different prior drift coefficients and 
their associated variance will provide different base case 
models (Fig. 12). Bayesian approach integrates in a 
consistent way not only the uncertainty due to the 
fluctuations around the mean but also the uncertainty on 
the base case model. 
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Figure 12: Application of simulation based on 
Turning Bands and Bayesian Kriging with different priors 

 

Conclusions 

Bayesian approach provides an excellent estimator which 
is more general than the traditional Kriging with external 
drift(s) and fits very well to the needs for time-to-depth 
conversion of seismic horizons. The underlying 
mathematical model infers in an accurate way the prior 
knowledge of trend model and associated uncertainty. 
The combination of BK with turning bands simulation 
algorithm provides an accurate and flexible method for 
generating conditional simulations with related uncertainty 
on the drift coefficients, very useful for structural 
uncertainty analysis. The method has been tested with 
success in several oil-field case studies. 
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