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Abstract

We introduce a novel functional form for approximating the
moveout of reflection traveltimes at large offsets. While the
classic hyperbolic approximation uses only two parameters
(the zero-offset time and the moveout velocity), our form
involves five parameters, which can be determined, in a
known medium, from zero-offset computations and from
tracing one non-zero-offset ray. We call it a generalized
approximation because it reduces to some known three-
parameter forms (the shifted hyperbola of Malovichko, de
Baziliere, and Castle; the Padé approximation of Alkhalifah
and Tsvankin; and others) with a particular choice of pa-
rameters. By testing the accuracy of the proposed approx-
imation with analytical and numerical examples, we show
that it can bring several-orders-of-magnitude improvement
in accuracy compared to known approximations, which
makes it as good as exact for all practical purposes.

INTRODUCTION

The reflection traveltime as a function of the source-
receiver offset has a well-known hyperbolic form in the case
of plane reflectors in homogeneous isotropic (or elliptically
anisotropic) overburden. A hyperbolic behavior of the PP
moveout is always valid around the zero offset thanks to
the source-receiver reciprocity and the first-order Taylor se-
ries expansion. However, any deviations from this simple
model may cause nonhyperbolic behavior at large offsets
(Fomel and Grechka, 2001).

Considerable research effort has been devoted to develop-
ing nonhyperbolic moveout approximations in both isotropic
and anisotropic media. The work on isotropic approxima-
tions goes back to Bolshykh (1956), Taner and Koehler
(1969), Malovichko (1978), de Bazelaire (1988), Castle
(1994), and others. Fowler (2003) provides a comprehen-
sive review of many different approximations developed for
non-hyperbolic moveout in anisotropic (VTI) media. A par-
ticularly simple “velocity acceleration” model for nonhyper-
bolic moveout is suggested by Taner et al. (2005, 2007).
Causse (2004) approximates nonhyperbolic moveout by
expanding it into a sum of basis functions. Douma and
Calvert (2006) build an accurate moveout approximation by
using rational interpolation between several rays.

In this paper, we propose a general functional form for non-
hyperbolic approximations that can be applied to any kind
of seismic media. The proposed form includes five coeffi-
cients as opposed to two coefficients in the classic hyper-
bolic approximation. In certain cases, the number of co-
efficients can be reduced. In the case of a homogeneous
VTI medium and the “acoustic approximation” of Alkhali-
fah (1998), our approximation becomes identical to the one
proposed previously by Fomel (2004). In the general case,
determining the optimal coefficients requires tracing of only
one non-zero-offset ray.

NONHYPERBOLIC MOVEOUT APPROXIMATION

Let t(x) represent the reflection PP (or SS) traveltime as
a function of the source-receiver offset x. We propose the
following general form of the moveout approximation:

t2(x) ≈ (1− ξ) (t20 + a x2) + ξ
√

t40 + 2 b t20 x2 + c x4 . (1)

The five parameters a, b, c, ξ, and t0 describe the moveout
behavior. By simple algebraic manipulations, one can also
rewrite equation (1) as

t2(x) ≈ t20 +
x2

v2
+

A x4

v4

(
t20 + B

x2

v2
+

√
t40 + 2 B t20

x2

v2
+ C

x4

v4

) , (2)

where the new set of parameters A, B, C, v, and t0 is
related to the previous set by the equalities

a =
A B + B2 − C

v2 (A + B2 − C)
; (3)

b =
B

v2
; (4)

c =
C

v4
; (5)

ξ =
A

C −B2
. (6)

The inverse transform is given by

v2 =
1

a (1− ξ) + b ξ
; (7)

A =
ξ
(
c− b2

)
[a (1− ξ) + b ξ]2

; (8)

B =
b

a (1− ξ) + b ξ
; (9)

C =
c

[a (1− ξ) + b ξ]2
. (10)
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The nonhyperbolic part of the traveltime approximation (1)
and (2) is controlled by parameters ξ or A, correspondingly.
When ξ = 0 or c = b2, approximation (1) is hyperbolic.
When both B and C are very large, approximation (2) also
reduces to the hyperbolic form.

Equation (2) can be also rewritten in the following form

t2(x) ≈ t20

[
1 + x̃2 +

A x̃4

y(x̃)

]
, (11)

where x̃ is the normalized offset x̃ = x/(v t0) and

y(x̃) = 1 + B x̃2 +
√

1 + 2 B x̃2 + C x̃4 (12)

is the positive solution of the quadratic equation

y2 − 2 (1 + B x̃2) y + (B2 − C) x̃4 = 0 . (13)

The Taylor series for traveltime squared from equations
(11) around x̃ = 0 is

t2(x̃) = t20

[
1 + x̃2 +

A

2
x̃4 − A B

2
x̃6 + . . .

]
. (14)

Connection with other approximations

Equations (1-2) reduce to some well-known approxima-
tions with special choices of parameters.

• If A = 0, the proposed approximation reduces to the
classic hyperbolic form

t2(x) ≈ t20 +
x2

v2
, (15)

which is a two-parameter approximation.

• The choice of parameters A = (1 − s)/2; B = s/2;
C = 0 reduces the proposed approximation to the
shifted hyperbola (Malovichko, 1978; de Bazelaire,
1988; Castle, 1994), which is the following three-
parameter approximation:

t(x) ≈ t0

(
1− 1

s

)
+

1

s

√
t20 + s

x2

v2
. (16)

• The choice of parameters A = −4 η; B = 1 + 2 η;
C = (1 + 2 η)2 reduces approximation (2) to the form
proposed by Alkhalifah and Tsvankin (1995), which is
the following three-parameter approximation:

t2(x) ≈ t20 +
x2

v2
− 2 η x4

v4

[
t20 + (1 + 2 η)

x2

v2

] . (17)

• The choice of parameters A = −2 γ t20 v2; B = −A/2;
C = A2/4 reduces approximation (2) to the fol-
lowing three-parameter approximation suggested by
Blias (2007) and reminiscent of the “velocity accelera-
tion” equation proposed by Taner et al. (2005):

t2(x) ≈ t20 +
x2

v2 (1 + γ x2)
. (18)

• The choice of parameters A = 2 tan2 θ, B = 1 −
tan2 θ, C = 1/ cos4 θ reduces the proposed approxi-
mation to the double-square-root expression

t(x) ≈
√

z2 + (y + x/2)2

V

+

√
z2 + (y − x/2)2

V
, (19)

where V = v cos θ, z = (t0 V/2) cos θ, and y =
(t0 V/2) sin θ. Equation (19) describes moveout pre-
cisely for the case of a diffraction point in a constant
velocity medium.

Thus, the proposed approximation encompasses some
other known forms but introduces more degrees of freedom
for the optimal selection of parameters.

General method for parameter selection

Zero-offset ray

The Taylor expansion of approximation (2) around the zero
offset

t2(x) = t20 +
x2

v2
+

A

2

x4

v4 t20
+ O(x6) (20)

provides a convenient method for evaluating coefficients t0,
v, and A by matching expansion (20) to the corresponding
expansion of the exact traveltime. This is the method used
previously for deriving approximations (15) and (16). In an
isotropic v(z) medium, the coefficients are readily available
and reduce to statistical averages of the velocity distribution
(Bolshykh, 1956)

t0 = 2 m−1 , (21)

v2 =
m1

m−1
, (22)

A =
1

2

(
1− m3 m−1

m2
1

)
, (23)

where

mk =

z∫
0

V k(ζ) dζ

Equations (21-23) are easily extensible to the vertical trans-
verse isotropy (VTI) case (Ursin and Stovas, 2006).

Nonzero-offset ray

To determine uniquely the remaining coefficients B and C,
we propose to use just one additional ray reflected at a
nonzero offset. Suppose that a reflection ray with the ray
parameter P arrives at the offset X and traveltime T . Sub-
stituting approximation (2) into equations t(X) = T and
t′(X) = P and solving for B and C produces the explicit
analytical solution

B =
t20 (X − P T v2)

X (t20 − T 2 + P T X)
− A X2

X2 + v2 (t20 − T 2)
, (24)

C =
t40 (X − P T v2)2

X2 (t20 − T 2 + P T X)2
+

2 A v2 t20
X2 + v2 (t20 − T 2)

. (25)
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Horizontal ray

If the reference ray happens to be horizontal, both X and T
are infinite, and equations (24-25) are not directly applica-
ble. However, one can use the same principle and match
two terms for the behavior of the traveltime at infinitely large
offsets. If the traveltime behaves as

t2(x) ≈ T 2
∞ + P 2

∞ x2 (26)

for x approaching infinity, then, matching the corresponding
behavior of approximation (2), we find that

B =
t20 (1− v2 P 2

∞)

t20 − T 2
∞

− A

1− v2 P 2
∞

, (27)

C =
t40 (1− v2 P 2

∞)2

(t20 − T 2
∞)2

. (28)

ACCURACY TESTS

To illustrate the applicability of the proposed approximation,
we try several analytical and numerical models. Using this
set of models, we test the proposed approximation against
the hyperbolic approximation, the shifted hyperbola approx-
imation, and the Alkhalifah-Tsvankin approximation.

Analytical examples

Linear velocity

We start with an analytical isotropic three-parameter
model: the linear velocity model. In this models, it is possi-
ble to compute the exact moveout analytically and thus to
compare directly the accuracy of different approximations.
We show this comparison in Figure 1, where the relative
approximation error is plotted for different approximations
against a large range of the offset-to-depth ratio and the
maximum-to-minimum velocity ratio. As evident from the
figures, three-parameter approximations (shifted-hyperbola
and Alkhalifah-Tsvankin) improve the accuracy of the two-
parameter hyperbolic approximation. However, the pro-
posed five-parameter generalized approximation brings a
more significant improvement and reduces the error by sev-
eral orders of magnitude.

Homogeneous VTI layer

Our next analytical example is a horizontal reflector in a
homogeneous VTI (vertically transverse isotropic) medium.
According to the “acoustic” approximation of Alkhalifah
(1998), one can use the following parametric equations to
define the traveltime-offset relationship in this model:

x(p) =
2 H

vz

p v2

(1− 2 η p2 v2)2
√

1− p2 v2

1−2 η p2 v2

, (29)

t(p) =
2 H

vz

(1− 2 η p2 v2)2 + 2 η p4 v4

(1− 2 η p2 v2)2
√

1− p2 v2

1−2 η p2 v2

, (30)

where p is the ray parameter, H is the depth of the reflector,
vz is the vertical velocity, v is the NMO velocity, and η is
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Figure 1: Relative error of different traveltime ap-
proximations as a function of velocity contrast and
offset/depth ratio for the case of a linear velocity
model. (a) Hyperbolic approximation, (b) Shifted hy-
perbola approximation, (c) Alkhalifah-Tsvankin ap-
proximation, (d) Generalized nonhyperbolic approxi-
mation. The proposed generalized approximation re-
duces the maximum approximation error by several
orders of magnitude.

the dimensionless parameter introduced by Alkhalifah and
Tsvankin (1995).

At small offsets, the homogeneous VTI traveltime behaves
as

t2(x) ≈ t20 +
x2

v2
− 2 η x4

t20 v4
, (31)

which allows us to define A = −4 η according to equa-
tion (20).

At large offsets, the homogeneous VTI traveltime behaves
as

t2(x) ≈ t20 (1 + 2 η) +
x2

v2 (1 + 2 η)
. (32)

Comparing with equation (26), we note that T∞ =
t0
√

1 + 2 η and P∞ = 1/(v
√

1 + 2 η). Substituting into
equations (27-28), we define the coefficients B and C to
be

B =
1 + 8 η + 8 η2

1 + 2 η
, (33)

C =
1

(1 + 2 η)2
. (34)

Equation (2) with coefficients given by equations (33-34)
is precisely equivalent to the traveltime approximation sug-
gested previously by Fomel (2004). Fomel (2004) shows
comparisons with alternative non-hyperbolic approxima-
tions, which demonstrate superior accuracy of equation (2)
in a case of strongly anisotropic material.
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Figure 2: One-dimensional model extracted from the
left column of the anisotropic Marmousi model and
corresponding reflection rays.

(a) (b)

(c) (d)

Figure 3: Exact moveout from ray tracing in the one-
dimensional anisotropic Marmousi model (dots) and
different approximations (solid lines). (a) Hyperbolic
approximation, (b) Shifted hyperbola approximation,
(c) Alkhalifah-Tsvankin approximation, (d) General-
ized nonhyperbolic approximation.

Numerical example

For a numerical test, we create a one-dimensional velocity
model by extracting a depth column out of the anisotropic
Marmousi model, created by Alkhalifah (1997). We eval-
uate exact reflection traveltimes by ray tracing (Figure 2).
Next, we compare the exact time for different reflection
rays with values predicted by different traveltime approxi-
mations. As shown in Figure 3, only the proposed gener-
alized approximation is able to predict the true traveltime
accurately over the full range of offsets.

CONCLUSIONS

We propose a five-parameter nonhyperbolic moveout ap-
proximation that generalizes the classic two-parameter hy-
perbolic approximation as well as some known three-
parameter approximations. We propose a method for se-
lecting the approximation parameters, which involves only
two rays: the normal-incident ray and one additional ray,
preferably at a large offset. The special case of the addi-
tional ray being horizontal can be handled as well.

A comparison with the classic hyperbolic approximation,
the shifted hyperbola approximation and the Alkhalifah-
Tsvankin approximation for analytical and numerical
isotropic and transversely isotropic models shows that the
proposed generalized nonhyperbolic approximation can
bring an improvement of several orders of magnitude in
approximation accuracy. Based on these experiments, we
claim that, for all practical purposes, the proposed approx-
imation is as good as the exact moveout.
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