

Eleventh International Congress of the Brazilian Geophysical Society

Seismic imaging on novel computer architectures
Jairo Panetta, Paulo Souza, Carlos Cunha, André Romanelli, Fernando Roxo, Ivan Pedrosa, Silvio Sinedino, Luiz Monnerat,
Leandro Carneiro, Carlos Albrecht, TECNOLOGIA GEOFÍSICA, PETROBRAS, Brazil

Copyright 2009, SBGf - Sociedade Brasileira de Geofísica

This paper was prepared for presentation during the 11th International Congress of the
Brazilian Geophysical Society held in Salvador, Brazil, August 24-28, 2009.

Contents of this paper were reviewed by the Technical Committee of the 11th
International Congress of the Brazilian Geophysical Society and do not necessarily
represent any position of the SBGf, its officers or members. Electronic reproduction or
storage of any part of this paper for commercial purposes without the written consent
of the Brazilian Geophysical Society is prohibited.
__

Abstract

This paper describes performance results obtained by
porting production seismic imaging software to a set of
novel processor architectures, with particular emphasis
on a cluster of GPUs.

Introduction

Seismic processing algorithms are constantly evolving, in
close connection with innovations in seismic data
acquisition technology. In addition to that, an oil company
has to adequate its proprietary algorithms to easily
interrelate with a small set of commercial processing
packages. In order to cope with this dynamic
environment, production codes for seismic imaging
developed at Tecnologia Geofísica of Petrobras are
designed to accommodate multipurpose algorithms under
a software structure that emphasizes portability and
modularity.

But the lifetime of a software design may be limited by the
lifetime of the computer architecture it was designed for.
New trends in processor architecture (multi-core and
many-core) and the ever-increasing number of
processors on a cluster may trigger software redesign.

The flexibility of Petrobras seismic imaging software
makes it a natural candidate to test the adequacy of a set
of different algorithms and a previously designed software
structure to the recently arrived computer architectures,
since testing demands a limited amount of change in the
actual production code.

This paper describes the structure of seismic imaging
software developed at Petrobras, its use in daily
production runs and the porting and achieved speed of
one algorithm – the Kirchhoff time migration – to novel
computer architectures, including a cluster of GPUs.

Seismic imaging software structure and capabilities

One of the main characteristics of the seismic imaging
software developed at Petrobras is the structural flexibility
to implement new functionalities. Some of these features
are listed below:

• The same program can perform time migration,
or time migration velocity analysis, in 2D or 3-D,
pre-stack or post-stack, in one pass or two pass,
as well as depth migration.

• The time migration and the migration velocity
analysis can accommodate just a velocity field,
or simultaneously a velocity field and an extra
parameter field, which can be related either to
anisotropy (VTI) or ray bending.

• The execution can originate from distinct
commercial platforms (ProMax, Omega) or
independently of any platform.

In some cases, in order to incorporate a new functionality
the algorithm has to be redesigned to fit the main code
structure, while seeking to reuse most of the previously
developed modules. This is the case of the depth
migration function, where only the traveltime computation
module differs from the one-pass time migration code. To
achieve this, the vertical axis of the traveltime tables is
converted to vertical traveltime in such a way that the
depth migrated output has also time as the vertical axis.
Two positive side effects of this strategy are: regular
sampling of the output (same as input) with all the anti-
aliasing control defined in the time domain, and the fact
that the output is already in the time domain, where most
of the post conditioning algorithms (band pass filtering, for
example) are to be applied before the subsequent
conversion to depth. Once these post migration
processing is completed, a simple vertical-ray depth
conversion is necessary to produce the required depth
volume.

This structural flexibility is a software design goal that
may be in danger due to recent trends in computer
architecture. It is well known that the lifetime of production
code (decades as indicated by [1] and [4]) outlasts the
computer architecture it was originally designed for. That
is the case of our seismic imaging software, which
suffered major reorganizations since its initial release
(1995) to accommodate symmetric multi processors
(SMP), clusters of SMPs, and distributed memory clusters
with ever-increasing processor count. The newcomer
multi-core and many-core processor architectures [2], [3]
may change software design drastically. Current software
characteristics highlights, detailed described bellow, are:

• Portability over computer platforms and
commercial processing packages, with high
performance on x86 processors;

• Flexible, dynamically balanced, fault tolerant MPI
parallelism;

SEISMIC IMAGING ON NOVEL COMPUTER ARCHITECTURES
___ 2

• Performance (and degree of parallelism) driven
by a single parameter;

• Built-in execution time instrumentation
automatically collected and stored for every run.

The application is divided in two main parts – a sequential
one, which is incorporated into commercial processing
packages, and a parallel code that runs on large clusters.
The sequential part interacts with the user via the
commercial platform API, and as so, it has to be cast to
each package. It dynamically interacts with the parallel
part by file exchange, sending input data and receiving
computed results. The parallel part executes the seismic
algorithm, and the same parallel code serves all
packages.

Both parallel and sequential source code are written in
standard conforming Fortran 95. The parallel source uses
MPI-1.0 and has about 1K lines of C to speed-up IO.

To increase parallelism, domain decomposition occurs at
the output space, using the fact that the computation of
each output trace is independent of any other output
trace. The output surface is partitioned into non-
overlapping rectangular blocks of adjustable size. The
block is the parallel unity of work (parallel grain).

A single master process schedules output block
computations to slave processes by slaves demand.
Dynamic load balancing accommodates uneven
processing requirements and speeds.

Block size drives performance. For a fixed output area,
larger block sizes limit parallelism but decreases re-
reading and re-filtering of input traces.

The parallel kernel – compute an output block – is heavily
vectorized and optimized. Effective portability (portability
maintaining top speeds) over x86 based processors is
achieved by the heavy use of performance analysis tools
(such as [5], [6]). The kernel is composed by a triple
nested loop. The innermost loop computes all
contributions of an input trace to an output trace. The
middle loop selects the target output trace from the given
block. The outermost loop sweeps all input traces that
may contribute to the output block, reading and filtering
the selected trace.

Innermost loop memory references are the filtered input
trace (load), the output trace (load, modify, store), the
velocity (load) and scratch area. The middle loop brings
another output trace and velocity to the inner loop. Since
the filtered input trace fully dominates the inner loop
memory requirements, the obvious cache reuse policy is
to keep the filtered input trace in cache and tolerate cache
misses for the output trace and velocity. This policy was
implemented with careful coding, resulting in L2 usage of
about 160KB and L2 cache hit ratio in excess of 99%.
The outermost and the mid loops do not fit cache, since
the average block requires about 100MB of memory.

The application has binary reproducibility – output file
content is independent (binary) of processor count

Fault tolerance is central to long-running jobs on large
Beowulf clusters. It is implemented by MPI
intercommunicators, as suggested by [7]: each slave

process communicates with the master process by a
dedicated intercommunicator, allowing the master
process survival when a slave crashes. In such a case,
the master process reschedules the failed block to
remaining slaves. Processes are statically assigned to
processors by a one-to-one mapping.

Built-in execution time instrumentation generates
performance data for every run, which is automatically
stored at a data base. This performance data is central to
drive performance developments, to correct user’s choice
of performance sensitive execution parameters (e.g. core
count) and to detect machinery performance failures. The
data base eases data retrieval and statistics computation
over multiple jobs. It stores our own performance metric:
the number of contributions accumulated per second,
defined as the speed of input samples contributions to
output samples.

Figure 1: Wall clock distribution across processors

As an example of code capabilities and instrumentation,
Figure 1 contains a typical production run total execution
time and the migration loop execution time (both wall
clock) across 500 processors. From the total execution
time of about 1,300,000 seconds, about 1,150,000
seconds (88.4%) are used by the migration loop.
Remaining execution time is used to filter input traces
(about 10.2%) and IO. Plot jigger shows negligible load
unbalancing. It also shows a faulty processor (numbered
453) decommissioned at about 900,000 seconds of run
time.

Production spans a few thousand jobs per year. Table 1
contains the average core count and execution time of the
10, 100 and 1000 most demanding jobs over one year.
Data shows that high processor count and long execution
times are usual in production.

Table 1: Characterizing Production
 2006 2007

Job count
(top)

Average
core count

Days of
execution

Average
core count

Days of
execution

10 787 22 950 36
100 656 10 815 17
1000 185 2 196 3

Eleventh International Congress of the Brazilian Geophysical Society

CUNHA, PANETTA, SOUZA, ROMANELLI, ROXO, PEDROSA, SINEDINO, MONNERAT, CARNEIRO, ALBRECHT

3

As illustrated in Table 2 the number of jobs evolved from
about 1600 in 2006 to about 3000 along 2008 and the top
core count evolved from 1200 in 2006 to 3160 in 2008.

Table 2: Production Evolution

2006 2007 2008
No. of
Jobs

Max no.
of cores

No. of
Jobs

Max no.
of cores

No. of
Jobs

Max no.
of cores

1565 1200 2685 2048 3000 3200

Reducing power consumption and heat dissipation have
been the driving forces of recent computer architecture
proposals. Massive parallelism is another clear trend. In
this scenario of major changes, testing new architectural
trends became of strategic importance. Petrobras have
been testing these new trends since 2005. A previous
work [8] describes our findings on the IBM BlueGene,
multi-core x86 and the Cell Broadband Engine. A
summary of these findings is described bellow, for the
benefit of the reader. Research proceeded by porting the
software structure to a GPU and to a cluster of GPUs,
also described bellow.

Performance on large clusters of multi-cores

By late 2005, Petrobras and IBM cooperated on a
research project to test the adequacy of the IBM Blue
Gene/L [9] to the production Kirchhoff time migration
application. A few available time slots on the four racks,
8192 processors IBM Blue Gene/L at IBM Rochester
were granted to the project. Timing experiments were
performed at Rochester to be compared with those
obtained on a 1000 processor Beowulf blade cluster at
Petrobras (2GHz Opteron 246 single-core processors).
Table 3 compares speed/core (in mega contributions per
second and core), speed/power (in mega contributions
per second and watt) and speed/price (in kilo
contributions per second and dollar) on both machines.
All the prices shown in this and other tables throughout
this paper reflect the prices at the time the respective
technology was introduced.

The experiment is somehow unfair to the Blue Gene since
the compiler does not vectorize single precision loops
[14]. Even so, this pioneer architecture shows its strength
in speed/watt and parallel scalability: the measured
compound processing speed on a Blue Gene run with
8192 processors was 37.7G contributions per second
against 29.3G contributions per second on the 1000
processors Beowulf cluster. The experiment also shows
code scalability, with runs up to 8192 cores.

Table 3: Blue Gene and blade performance
System Cores/node Speed/core
Single core blade 2 29.30
Blue Gene/L 2 4.61
System Power/node (W) Speed/Power
Single core blade 153.67 0.38
Blue Gene/L 19.53 0.47
System Price/node (US$) Speed/Price
Single core blade 4000 14,65
Blue Gene/L 2000 4.61

Over recent years, this same application was tested on a
set of x86 different nodes. These include old dual
processor servers with two single-core 1.8GHz Opteron
244 (named Slow Single Core), dual processor servers
with two single-core 3.06GHz Intel Xeon (a top sample of
the high frequency, high power consumption architectural
trend, named Fast Single Core), dual processors blades
with two 2GHz dual-core Opteron 270 (a pioneer dual-
core, named Dual core blade) and a prototype desktop
machine with two 2.66GHz quad-core Intel Xeon (named
Quad core). The same code was submitted to all different
nodes, using processor specific compilation switches.
Table 4 summarizes the results, using Table 3
nomenclature and units.

The speed per core improvements with the number of
cores per chip show that the computational characteristics
of the application suited multi-cores quite well. The high
cache hit ratio avoids competition for memory. The low
cache footprint and process independency avoid
competition for cache lines among cores. The high
computational intensity and high vectorization ratio
enables simultaneous floating-point vector operations to
be dispatched, utilizing recent multi-core micro-
architecture enhancements.

Table 4: Multi core performance

System Cores/node Speed/core
Slow Single Core 2 30.24
Fast Single Core 2 36.67
Dual core blade 4 33.98
Quad core 8 49.01
System Power/node (W) Speed/Power
Slow Single Core 209.61 0.29
Fast Single Core 238.16 0.31
Dual core blade 198.94 0.68
Quad core 415.13 0,94
System Price/node (US$) Speed/Price
Slow Single Core 2500 24.19
Fast Single Core 2500 29.34
Dual core blade 4000 33.98
Quad core 6300 62.23

Speed per power and speed per price also increase with
cores per chip, leveraged by the speed per core
improvements. To identify the gains, it suffices to
normalize the three ratios by the slow single core values.
Figure 2 shows speed per power and speed per price
gains in excess of speed per core gains.

1,21 1,12

1,62

1,07

2,37

3,27

1,21
1,40

2,57

0

1

2

3

4

Fast Single Core Dual core blade Quad core

R
at

io
 to

 S
lo

w
 S

in
gl

e
C

or
e

Speed/Core Speed/Power Speed/Price
Figure 2: Gain ratios to slow single core

Eleventh International Congress of the Brazilian Geophysical Society

SEISMIC IMAGING ON NOVEL COMPUTER ARCHITECTURES
___ 4

Cell Broadband Engine

Performance results presented in the last section were
obtained without any source code modification.
Consequently, the software design survived the multi-core
trend at current core per chip count. But the many-core
trend, represented by the Cell and GPU, requires kernel
rewriting to explore the architecture full potential.

The Cell Broadband Engine Processor Architecture [10] is
a promising heterogeneous architecture that achieves an
interesting combination of outstanding floating point
processing speed and low power consumption by using
multiple simple cores and relinquishing memory
consistency. It contains eight simple but powerful cores
(SPE) and a PowerPC core (PPE). Each SPE controls its
own flat memory – a critical 256KB – while the PPE has a
regular memory size and hierarchy. Data is moved among
memories by explicit DMA requests over a high
bandwidth internal bus. Data movement and coherency
among memories are the programmer’s responsibility.

The Cell processor is the central unit of the gaming
console Sony PlayStation 3 (PS3). PS3 attracts by its low
cost (US$ 600 at the time of its introduction) and mass
production, even being powered by a stripped down Cell
processor (only 6 SPEs are available for general
processing). In 2007 Petrobras build a modest cluster
with four PS3 to test the adequacy of this technology to
the application.

The parallelism strategy within a single Cell was to assign
to each SPE the computation of all contributions of a
single input trace to a single output trace and to assign to
the PPE the reading and filtering of input traces. Given a
filtered input trace, each SPE issues DMA requests of
output traces and input velocities, copying data from the
PPE memory to its own memory. Each SPE updates the
output trace with the input trace contributions and issue a
DMA request to store the updated output trace on PPE
memory. The set of SPEs splits the output block, and
output traces are transferred to each SPE by SPE
demand. The PPE and the SPEs synchronize at a barrier
whenever an input trace was fully processed. Double
buffers at the PPE memory allow pipelining of input trace
reading and filtering, minimizing barrier waiting time.
Multiple Cells use the untouched master – slave
parallelism, where the master process runs on a
dedicated Cell and assigns output blocks to slave Cells by
slave demand.

SPE memory space and DMA timing are critical issues to
the success of this strategy. Each SPE uses about 160KB
of memory to compute all contributions of an input trace
to an output trace (the used x86 L2 cache space).
Remaining SPE memory is used for double buffers of
output trace and velocity, to allow pipelining of hardware
serialized DMA requests. The high flop count per
load/store (computational intensity) allows enough time
for DMA completion for up to eight SPEs, even at high
SPE floating-point arithmetic processing speeds.

The first PS3 experiment investigates parallel scalability
within a single Cell, varying the number of SPEs involved
in the computation. Figure 3 presents speed-up and

parallel efficiency computed from wall clock times of the
master process that runs on a second, dedicated PS3.

Execution times scale quite well with SPE count, showing
algorithm adequacy to the Cell.

The second PS3 experiment repeats the multi-core
experiment on a single slave PS3, driven by a dedicated
master PS3. Table 5 summarizes the results, using the
same nomenclature and units as before and considering
one Cell SPE as a core. The quad-core results of Table 4
are repeated to ease comparisons.

1,00

2,93

3,87

4,76

5,62

1,98

1,00

0,99

0,98

0,97

0,95

0,94

0

1

2

3

4

5

6

1 2 3 4 5 6

SPE

Sp
ee

d-
up

0,90

0,92

0,94

0,96

0,98

1,00

Ef
fic

ie
nc

y

Speed-up Efficiency
Figure 3: Single PS3 parallel performance

Table 5 shows that the PS3 exceeds in all metrics. A full
PS3 is about 25% faster than a full quad-core. The PS3 is
the most power efficient of all nodes, and has at least one
order of magnitude better price/performance ratio over all
conventional technology tested in these experiment..

Table 5: Single PS3 performance

System Cores/node Speed/core
Quad core 8 49.01
PS3 6 81.38
System Power/node (W) Speed/Power
Quad core 415.13 0,94
PS3 380.73 1.28
System Cost/node (US$) Speed/Price
Quad core 6300 62.23
PS3 600 813.80

The third PS3 experiment measures parallel scalability on
the PS3 cluster, using the multi-core experiment input
data and a dedicated master PS3.

Table 6: PS3 cluster parallel performance

Slaves PS3 2 3
Speed-up 1.99 2.92
Efficiency 0.99 0.97

The measurements reported by Table 6 show adequate
parallel scalability of the time migration on the PS3
Cluster, although limited by the modest cluster size.

Eleventh International Congress of the Brazilian Geophysical Society

CUNHA, PANETTA, SOUZA, ROMANELLI, ROXO, PEDROSA, SINEDINO, MONNERAT, CARNEIRO, ALBRECHT

5

Graphics Processing Units

Graphics processing units (GPUs) are auxiliary devices
specialized on graphics operations, usually coupled to
x86 CPU boards or within a game console. They are
particularly interesting to HPC applications due to a
potentially very high floating-point execution speed at a
modest price. The lack of a programming model and data
transfer ratios from CPU memory to GPU memory and
back, as well as the modest GPU memory size have been
major impediments, over the years, to the adoption of
GPUs in HPC. Recently released GPUs have overcome
some of these issues.

Current GPUs dedicated to HPC such as the NVIDIA
Tesla C1060 can be seen as a set of 30 processors,
clocked at 1.3 GHz, that oversee a large (4GB) graphics
memory ([12], [13]). Since bringing data from the graphics
memory to the GPU processor takes 400 to 600[13]
cycles, these cycles may be used by the processor to
perform other, independent computations. In order to do
that, each processor receives a set of independent
threads and interleaves execution of instructions of
different threads. Best performance occurs when the set
of available threads perform identical operations (such as
on vector operations – see [11] for details).

Porting our application to this architecture requires
rewriting its kernel. The GPU computation starts with the
output block and requires the velocity field to reside in
graphics memory. A filtered input trace is dispatched to
the graphics memory. The set of 30 processors compute
all contributions of the input trace to the output volume at
the rate of one contribution per thread, using enormous
amount of fine grain parallelism. While the GPU computes
all contributions of an input trace, the companion x86
CPU reads and filters the next input trace. CPU and GPU
synchronize whenever the next input trace is filtered and
the current input trace is fully processed. At this point, the
CPU delivers the new, filtered, input trace to the GPU
memory.

We recoded the kernel for the GPU using CUDA [13] and
conducted execution time experiments on a research
cluster of 36 quad-core, dual processor 2,33GHz Xeon
nodes, accelerated by two NVIDIA Tesla C1060 GPUs
per node, recently (late 2008) acquired by Petrobras.
Table 7 contrasts its performance with previously tested
machines, naming a “core” each of the 30 GPUs
processors.

Table 7: Single GPU performance

System Cores/node Speed/core
Quad core 8 49.01
PS3 6 81.38
GPU 60 136.09
System Power/node (W) Speed/Power
Quad core 415.13 0.94
PS3 380.73 1.28
GPU 734.94 11.11
System Cost/node (US$) Speed/Price
Quad core 6300 62.23
PS3 600 813.80
GPU 10000 816.54

Results are astonishing, mainly when considering
speed/power and speed/node and realizing that the GPU
is an attachment to x86 nodes. The attachment costs
around US$ 1850 per GPU (increase of 60%) plus the
increase in power consumption (around 80%), but it
speeds up the computation by a factor of 17. The
incremental add-on to a well established commercial
product is a major quality of this disruptive technology. On
the other hand, we should point out that not all x86 nodes
are able to accommodate GPUs, especially because the
GPUs should be installed in fast PCIe Gen2 slots in order
to avoid bottlenecks to the data transfers.

Table 8 contains the speed-up with the increase on the
number of nodes, showing that the scalability of the
software design is maintained.

Table 8: GPU cluster parallel performance

Slaves GPU 2 18 34 70
Speed-up 2.00 17.87 33.19 67.81
Efficiency 1.00 0.99 0.98 0.97

We observe a very efficient speed-up within the present
capacity of our GPU cluster. Velocity field reading at the
beginning of output block processing, and output data
writing at the end compromises less than 1% of total wall
time. Trace reading takes 1.3% of total wall time, but
since this time overlaps with GPU computation, it does
not affect performance at all.

In another test we increased CPU clock speed, CPU bus
speed and CPU main memory speed by a factor not less
than 20% in each item, the improved performance in our
application was less than 1% showing that this application
is GPU bound.

Conclusions

This paper probes the adequacy of the seismic imaging
production software design to new trends in computer
architecture. It describes design characteristics that were
critical to the success of up to 3200 processors, or 36
days production runs: algorithm organization, sequential
efficiency, parallel scalability, dynamic load balance, and
fault tolerance. It presents performance data on a variety
of x86 processor technologies, from old single-core to
recent quad-core nodes, as well as Blue Gene/L
performance data and two samples of the many-core
trend, the Sony PlayStation 3 and NVIDIA GPUs. Or, from
another angle, experimental data allows sensing the
adequacy of processor technology trends to the time
migration algorithm. Probed trends are multi-core and
many-core.

Our measured data shows that the multi-core trend at
current core per chip count is a viable substitute for the
higher frequency single-core trend in any tested
performance metric for time migration. It also shows that
the many-core disruptive technology, represented by the
Cell-based PS3 and by GPU attachments to x86 nodes,
has the best performance in any metric, including an
order of magnitude price/performance gain over any mass
production system tested. But these gains have a major

Eleventh International Congress of the Brazilian Geophysical Society

SEISMIC IMAGING ON NOVEL COMPUTER ARCHITECTURES
___ 6
cost – rewriting the application kernel to unleash the
processing speed of these novel computer architectures.

Our current software design survived quite well to the
novel architectures. It kept its characteristics of
accommodating multiple algorithms without any change to
the user’s perspective. It also kept its macroscopic
computational properties of scalability, dynamic load
balance and fault tolerance. So far, adaptations to new
computing environments were limited to its kernel,
provided that the new environments are balanced.

Porting the application kernel to GPU took 15 days
against 90 days to PS3. To achieve high performance in
CUDA programming is relatively easy. Due to the scalar
approach, vectorization (including if statements) is
transparent to developer, once the data has been copied
to GPU memory (4GB) its access is pretty much the same
as in regular C programming and the huge number of
simultaneous threads automatically hides pipeline and
memory latencies. On the other side, Cell programming
requires the developer to manage explicit vectorization
(with no vector masked instructions), memory access
control of small pieces of data (less than 256KB) (e.g.
double buffering using DMA) to hide memory latency, and
explicit loop unrolling to hide pipeline latencies. Besides,
code and data (including buffers) must fit 256KB, which is
SPE memory capacity. For example, 25 seismic traces
with 3000 samples will not fit in the SPE memory.

Future work comprises measuring the performance of the
depth migration on available machinery, as well as testing
the resiliency of each solution.

Acknowledgments

The authors thank Petrobras for the long term research
opportunity and for authorizing the public dissemination of
research results. The authors gratefully acknowledge the
continuous support of AMD, Intel, NVIDIA and IBM,
including the early availability of prototype boards for
performance measures. Blue Gene experiments would
not be possible without the continuous support of Fabio
Gandour and Marcelo L. Braunstein of IBM Brazil as well
as José E. Moreira of IBM USA, among others.

References

 [1] D. E. Post and L. G. Votta, “Computational Science
Demands a New Paradigm”, Physics Today 58(3), pp 35-
41, Jan 2005.

 [2] H. Sutter, J. Larus, “Software and the Concurrency
Revolution”, ACM Queue, Sep 2005.

 [3] J. Dongarra, D. Gannon, G. Fox and K. Kenedy, “The
Impact of Multicore on Computational Science Software”,
CTWatch Quaterly 3(1), Feb 2007.

 [4] D. E. Post and R. P. Kendall, “Software Project
Management and Quality Engineering Practices for
Complex, Coupled Multiphysics, Massively Parallel
Computational Simulations: Lessons Learned from ASCI”,
International Journal of High Performance Computing
Applications 18(4), Dec 2004.

 [5] OProfile, available at http://oprofile.sourceforge.net.

 [6] S. Browne, J. J. Dongarra, N. Garner, G. Ho and P.
Mucci, “A Portable Programming Interface for
Performance Evaluation on Modern Processors”, The
International Journal of High Performance Computing
Applications, 14(3), pp. 189-204, Mar 2000.

 [7] W. Gropp and E. Lusk, “Fault Tolerance in Message
Passing Interface Programs”, The International Journal of
High Performance Computing Applications, 18(8), pp.
363-372, Aug 2004.

 [8] J. Panetta, P. R. P. Souza Filho, C. A. Cunha Filho, F.
M. Roxo da Mota, S. S. Pinheiro, I. Pedrosa Jr, A. L.
Romanelli Rosa, L. R. Monnerat, L. T. Carneiro and C. H.
B. Albrecht, “Computational Characteristics of Production
Seismic Migration and its Performance on Novel
Processor Architectures”, Proceedings of the 19th
International Symposium on Computer Architecture and
High Performance Computing (SBAC-PAD), IEEE
Computer Society, 2007.

 [9] G. L. Chui, M. Gupta and A. K. Royyuru, Guest
Editors, “Blue Gene”, IBM Journal of Research and
Development, 49(2), pp. 189-500, May 2005.

 [10] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns,
T. R. Maeurer and D. Shippy, “Introduction to the Cell
Multiprocessor”, IBM Journal of Research and
Development, 49(4), pp 589-604, Jul 2005.

 [11] V. Volkov and J. W. Demmel, “Benchmarking GPUs
to Tune Dense Linear Algebra”, SC’08, Nov 2008.

 [12] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, SS. S.
Stone, D. B. Kirk and W. W. Hwu, “Optimization Principles
and Application Performance Evaluation of a
Multithreaded GPU using CUDA”, Proceedings of the 13th
ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, ACM Press, 2008.

 [13] NVIDIA CUDA Programming Guide, available at
http://www.nvidia.com/object/cuda_develop.html.

 [14] “Exploiting the Dual FPU in Blue Gene”, available at
http://www-03.ibm.com/systems/resources/systems
deepcomputing pdf exploitingbluegenedoublefpu.pdf,
page 3.

Eleventh International Congress of the Brazilian Geophysical Society

http://oprofile.sourceforge.net/
http://www.nvidia.com/object/cuda_develop.html
http://www-03.ibm.com/systems/resources/systems

	
	Abstract
	Introduction
	Seismic imaging software structure and capabilities
	Performance on large clusters of multi-cores
	Acknowledgments

