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Abstract 

This paper describes performance results obtained by 
porting production seismic imaging software to a set of 
novel processor architectures, with particular emphasis 
on a cluster of GPUs. 

 

Introduction 

Seismic processing algorithms are constantly evolving, in 
close connection with innovations in seismic data 
acquisition technology. In addition to that, an oil company 
has to adequate its proprietary algorithms to easily 
interrelate with a small set of commercial processing 
packages. In order to cope with this dynamic 
environment, production codes for seismic imaging 
developed at Tecnologia Geofísica of Petrobras are 
designed to accommodate multipurpose algorithms under 
a software structure that emphasizes portability and 
modularity. 

But the lifetime of a software design may be limited by the 
lifetime of the computer architecture it was designed for. 
New trends in processor architecture (multi-core and 
many-core) and the ever-increasing number of 
processors on a cluster may trigger software redesign.  

The flexibility of Petrobras seismic imaging software 
makes it a natural candidate to test the adequacy of a set 
of different algorithms and a previously designed software 
structure to the recently arrived computer architectures, 
since testing demands a limited amount of change in the 
actual production code.  

This paper describes the structure of seismic imaging 
software developed at Petrobras, its use in daily 
production runs and the porting and achieved speed of 
one algorithm – the Kirchhoff time migration – to novel 
computer architectures, including a cluster of GPUs.  

 

Seismic imaging software structure and capabilities 

One of the main characteristics of the seismic imaging 
software developed at Petrobras is the structural flexibility 
to implement new functionalities. Some of these features 
are listed below: 

• The same program can perform time migration, 
or time migration velocity analysis, in 2D or 3-D, 
pre-stack or post-stack, in one pass or two pass, 
as well as depth migration.  

• The time migration and the migration velocity 
analysis can accommodate just a velocity field, 
or simultaneously a velocity field and an extra 
parameter field, which can be related either to 
anisotropy (VTI) or ray bending. 

• The execution can originate from distinct 
commercial platforms (ProMax, Omega) or 
independently of any platform. 

In some cases, in order to incorporate a new functionality 
the algorithm has to be redesigned to fit the main code 
structure, while seeking to reuse most of the previously 
developed modules. This is the case of the depth 
migration function, where only the traveltime computation 
module differs from the one-pass time migration code. To 
achieve this, the vertical axis of the traveltime tables is 
converted to vertical traveltime in such a way that the 
depth migrated output has also time as the vertical axis. 
Two positive side effects of this strategy are: regular 
sampling of the output (same as input) with all the anti-
aliasing control defined in the time domain, and the fact 
that the output is already in the time domain, where most 
of the post conditioning algorithms (band pass filtering, for 
example) are to be applied before the subsequent 
conversion to depth. Once these post migration 
processing is completed, a simple vertical-ray depth 
conversion is necessary to produce the required depth 
volume. 

This structural flexibility is a software design goal that 
may be in danger due to recent trends in computer 
architecture. It is well known that the lifetime of production 
code (decades as indicated by [1] and [4]) outlasts the 
computer architecture it was originally designed for. That 
is the case of our seismic imaging software, which 
suffered major reorganizations since its initial release 
(1995) to accommodate symmetric multi processors 
(SMP), clusters of SMPs, and distributed memory clusters 
with ever-increasing processor count. The newcomer 
multi-core and many-core processor architectures [2], [3] 
may change software design drastically. Current software 
characteristics highlights, detailed described bellow, are: 

• Portability over computer platforms and 
commercial processing packages, with high 
performance on x86 processors;  

• Flexible, dynamically balanced, fault tolerant MPI 
parallelism;  
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• Performance (and degree of parallelism) driven 
by a single parameter;  

• Built-in execution time instrumentation 
automatically collected and stored for every run. 

The application is divided in two main parts – a sequential 
one, which is incorporated into commercial processing 
packages, and a parallel code that runs on large clusters. 
The sequential part interacts with the user via the 
commercial platform API, and as so, it has to be cast to 
each package. It dynamically interacts with the parallel 
part by file exchange, sending input data and receiving 
computed results. The parallel part executes the seismic 
algorithm, and the same parallel code serves all 
packages. 

Both parallel and sequential source code are written in 
standard conforming Fortran 95. The parallel source uses 
MPI-1.0 and has about 1K lines of C to speed-up IO.  

To increase parallelism, domain decomposition occurs at 
the output space, using the fact that the computation of 
each output trace is independent of any other output 
trace. The output surface is partitioned into non-
overlapping rectangular blocks of adjustable size. The 
block is the parallel unity of work (parallel grain). 

A single master process schedules output block 
computations to slave processes by slaves demand. 
Dynamic load balancing accommodates uneven 
processing requirements and speeds. 

Block size drives performance. For a fixed output area, 
larger block sizes limit parallelism but decreases re-
reading and re-filtering of input traces.  

The parallel kernel – compute an output block – is heavily 
vectorized and optimized. Effective portability (portability 
maintaining top speeds) over x86 based processors is 
achieved by the heavy use of performance analysis tools 
(such as [5], [6]). The kernel is composed by a triple 
nested loop. The innermost loop computes all 
contributions of an input trace to an output trace. The 
middle loop selects the target output trace from the given 
block. The outermost loop sweeps all input traces that 
may contribute to the output block, reading and filtering 
the selected trace.  

Innermost loop memory references are the filtered input 
trace (load), the output trace (load, modify, store), the 
velocity (load) and scratch area. The middle loop brings 
another output trace and velocity to the inner loop. Since 
the filtered input trace fully dominates the inner loop 
memory requirements, the obvious cache reuse policy is 
to keep the filtered input trace in cache and tolerate cache 
misses for the output trace and velocity. This policy was 
implemented with careful coding, resulting in L2 usage of 
about 160KB and L2 cache hit ratio in excess of 99%. 
The outermost and the mid loops do not fit cache, since 
the average block requires about 100MB of memory. 

The application has binary reproducibility – output file 
content is independent (binary) of processor count 

Fault tolerance is central to long-running jobs on large 
Beowulf clusters. It is implemented by MPI 
intercommunicators, as suggested by [7]: each slave 

process communicates with the master process by a 
dedicated intercommunicator, allowing the master 
process survival when a slave crashes. In such a case, 
the master process reschedules the failed block to 
remaining slaves. Processes are statically assigned to 
processors by a one-to-one mapping.  

Built-in execution time instrumentation generates 
performance data for every run, which is automatically 
stored at a data base. This performance data is central to 
drive performance developments, to correct user’s choice 
of performance sensitive execution parameters (e.g. core 
count) and to detect machinery performance failures. The 
data base eases data retrieval and statistics computation 
over multiple jobs. It stores our own performance metric: 
the number of contributions accumulated per second, 
defined as the speed of input samples contributions to 
output samples. 

 

 
Figure 1: Wall clock distribution across processors 

As an example of code capabilities and instrumentation, 
Figure 1 contains a typical production run total execution 
time and the migration loop execution time (both wall 
clock) across 500 processors. From the total execution 
time of about 1,300,000 seconds, about 1,150,000 
seconds (88.4%) are used by the migration loop. 
Remaining execution time is used to filter input traces 
(about 10.2%) and IO. Plot jigger shows negligible load 
unbalancing. It also shows a faulty processor (numbered 
453) decommissioned at about 900,000 seconds of run 
time. 

Production spans a few thousand jobs per year. Table 1 
contains the average core count and execution time of the 
10, 100 and 1000 most demanding jobs over one year. 
Data shows that high processor count and long execution 
times are usual in production.  
 

Table 1: Characterizing Production 
 2006 2007 

Job count 
(top) 

Average 
core count 

Days of 
execution 

Average 
core count 

Days of 
execution 

10 787 22 950 36 
100 656 10 815 17 
1000 185 2 196 3 
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As illustrated in Table 2 the number of jobs evolved from 
about 1600 in 2006 to about 3000 along 2008 and the top 
core count evolved from 1200 in 2006 to 3160 in 2008. 

 
Table 2: Production Evolution 

2006 2007 2008 
No.  of 
Jobs 

Max no. 
of cores 

No.  of 
Jobs 

Max no. 
of cores 

No. of 
Jobs 

Max no. 
of cores 

1565 1200 2685 2048 3000 3200 

 

Reducing power consumption and heat dissipation have 
been the driving forces of recent computer architecture 
proposals. Massive parallelism is another clear trend. In 
this scenario of major changes, testing new architectural 
trends became of strategic importance. Petrobras have 
been testing these new trends since 2005. A previous 
work [8] describes our findings on the IBM BlueGene, 
multi-core x86 and the Cell Broadband Engine. A 
summary of these findings is described bellow, for the 
benefit of the reader. Research proceeded by porting the 
software structure to a GPU and to a cluster of GPUs, 
also described bellow. 

 

Performance on large clusters of multi-cores 

By late 2005, Petrobras and IBM cooperated on a 
research project to test the adequacy of the IBM Blue 
Gene/L [9] to the production Kirchhoff time migration 
application. A few available time slots on the four racks, 
8192 processors IBM Blue Gene/L at IBM Rochester 
were granted to the project. Timing experiments were 
performed at Rochester to be compared with those 
obtained on a 1000 processor Beowulf blade cluster at 
Petrobras (2GHz Opteron 246 single-core processors). 
Table 3 compares speed/core (in mega contributions per 
second and core), speed/power (in mega contributions 
per second and watt) and speed/price (in kilo 
contributions per second and dollar) on both machines. 
All the prices shown in this and other tables throughout 
this paper reflect the prices at the time the respective 
technology was introduced. 

The experiment is somehow unfair to the Blue Gene since 
the compiler does not vectorize single precision loops 
[14]. Even so, this pioneer architecture shows its strength 
in speed/watt and parallel scalability: the measured 
compound processing speed on a Blue Gene run with 
8192 processors was 37.7G contributions per second 
against 29.3G contributions per second on the 1000 
processors Beowulf cluster. The experiment also shows 
code scalability, with runs up to 8192 cores.  
 

Table 3: Blue Gene and blade performance 
System Cores/node Speed/core 
Single core blade 2 29.30 
Blue Gene/L 2 4.61 
System Power/node (W) Speed/Power 
Single core blade 153.67 0.38 
Blue Gene/L 19.53 0.47 
System Price/node (US$) Speed/Price 
Single core blade 4000 14,65 
Blue Gene/L 2000 4.61 

Over recent years, this same application was tested on a 
set of x86 different nodes. These include old dual 
processor servers with two single-core 1.8GHz Opteron 
244 (named Slow Single Core),  dual processor servers 
with two single-core 3.06GHz Intel Xeon (a top sample of 
the high frequency, high power consumption architectural 
trend, named Fast Single Core), dual processors blades 
with two 2GHz dual-core Opteron 270 (a pioneer dual-
core, named Dual core blade) and a prototype desktop 
machine with two 2.66GHz quad-core Intel Xeon (named 
Quad core). The same code was submitted to all different 
nodes, using processor specific compilation switches. 
Table 4 summarizes the results, using Table 3 
nomenclature and units. 

The speed per core improvements with the number of 
cores per chip show that the computational characteristics 
of the application suited multi-cores quite well. The high 
cache hit ratio avoids competition for memory. The low 
cache footprint and process independency avoid 
competition for cache lines among cores. The high 
computational intensity and high vectorization ratio 
enables simultaneous floating-point vector operations to 
be dispatched, utilizing recent multi-core micro-
architecture enhancements. 

 
Table 4: Multi core performance 

System Cores/node Speed/core 
Slow Single Core 2 30.24 
Fast Single Core 2 36.67 
Dual core blade 4 33.98 
Quad core 8 49.01 
System Power/node (W) Speed/Power 
Slow Single Core 209.61 0.29 
Fast Single Core 238.16 0.31 
Dual core blade 198.94 0.68 
Quad core 415.13 0,94 
System Price/node (US$) Speed/Price 
Slow Single Core 2500 24.19 
Fast Single Core 2500 29.34 
Dual core blade 4000 33.98 
Quad core 6300 62.23 

Speed per power and speed per price also increase with 
cores per chip, leveraged by the speed per core 
improvements. To identify the gains, it suffices to 
normalize the three ratios by the slow single core values. 
Figure 2 shows speed per power and speed per price 
gains in excess of speed per core gains. 
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Cell Broadband Engine 

Performance results presented in the last section were 
obtained without any source code modification. 
Consequently, the software design survived the multi-core 
trend at current core per chip count. But the many-core 
trend, represented by the Cell and GPU, requires kernel 
rewriting to explore the architecture full potential. 

The Cell Broadband Engine Processor Architecture [10] is 
a promising heterogeneous architecture that achieves an 
interesting combination of outstanding floating point 
processing speed and low power consumption by using 
multiple simple cores and relinquishing memory 
consistency. It contains eight simple but powerful cores 
(SPE) and a PowerPC core (PPE). Each SPE controls its 
own flat memory – a critical 256KB – while the PPE has a 
regular memory size and hierarchy. Data is moved among 
memories by explicit DMA requests over a high 
bandwidth internal bus. Data movement and coherency 
among memories are the programmer’s responsibility. 

The Cell processor is the central unit of the gaming 
console Sony PlayStation 3 (PS3). PS3 attracts by its low 
cost (US$ 600 at the time of its introduction) and mass 
production, even being powered by a stripped down Cell 
processor (only 6 SPEs are available for general 
processing). In 2007 Petrobras build a modest cluster 
with four PS3 to test the adequacy of this technology to 
the application. 

The parallelism strategy within a single Cell was to assign 
to each SPE the computation of all contributions of a 
single input trace to a single output trace and to assign to 
the PPE the reading and filtering of input traces. Given a 
filtered input trace, each SPE issues DMA requests of 
output traces and input velocities, copying data from the 
PPE memory to its own memory. Each SPE updates the 
output trace with the input trace contributions and issue a 
DMA request to store the updated output trace on PPE 
memory. The set of SPEs splits the output block, and 
output traces are transferred to each SPE by SPE 
demand. The PPE and the SPEs synchronize at a barrier 
whenever an input trace was fully processed. Double 
buffers at the PPE memory allow pipelining of input trace 
reading and filtering, minimizing barrier waiting time. 
Multiple Cells use the untouched master – slave 
parallelism, where the master process runs on a 
dedicated Cell and assigns output blocks to slave Cells by 
slave demand. 

SPE memory space and DMA timing are critical issues to 
the success of this strategy. Each SPE uses about 160KB 
of memory to compute all contributions of an input trace 
to an output trace (the used x86 L2 cache space). 
Remaining SPE memory is used for double buffers of 
output trace and velocity, to allow pipelining of hardware 
serialized DMA requests. The high flop count per 
load/store (computational intensity) allows enough time 
for DMA completion for up to eight SPEs, even at high 
SPE floating-point arithmetic processing speeds.  

The first PS3 experiment investigates parallel scalability 
within a single Cell, varying the number of SPEs involved 
in the computation. Figure 3 presents speed-up and 

parallel efficiency computed from wall clock times of the 
master process that runs on a second, dedicated PS3. 

Execution times scale quite well with SPE count, showing 
algorithm adequacy to the Cell. 

The second PS3 experiment repeats the multi-core 
experiment on a single slave PS3, driven by a dedicated 
master PS3. Table 5 summarizes the results, using the 
same nomenclature and units as before and considering 
one Cell SPE as a core. The quad-core results of Table 4 
are repeated to ease comparisons. 
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Figure 3: Single PS3 parallel performance 

 

Table 5 shows that the PS3 exceeds in all metrics. A full 
PS3 is about 25% faster than a full quad-core. The PS3 is 
the most power efficient of all nodes, and has at least one 
order of magnitude better price/performance ratio over all 
conventional  technology tested in these experiment.. 

 
Table 5: Single PS3 performance 

System Cores/node Speed/core 
Quad core 8 49.01 
PS3 6 81.38 
System Power/node (W) Speed/Power 
Quad core 415.13 0,94 
PS3 380.73 1.28 
System Cost/node (US$) Speed/Price 
Quad core 6300 62.23 
PS3 600 813.80 

 

The third PS3 experiment measures parallel scalability on 
the PS3 cluster, using the multi-core experiment input 
data and a dedicated master PS3.  

 
Table 6: PS3 cluster parallel performance 

Slaves PS3 2 3 
Speed-up 1.99 2.92 
Efficiency 0.99 0.97 

 

The measurements reported by Table 6 show adequate 
parallel scalability of the time migration on the PS3 
Cluster, although limited by the modest cluster size. 
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Graphics Processing Units  

Graphics processing units (GPUs) are auxiliary devices 
specialized on graphics operations, usually coupled to 
x86 CPU boards or within a game console. They are 
particularly interesting to HPC applications due to a 
potentially very high floating-point execution speed at a 
modest price. The lack of a programming model and data 
transfer ratios from CPU memory to GPU memory and 
back, as well as the modest GPU memory size have been 
major impediments, over the years, to the adoption of 
GPUs in HPC. Recently released GPUs have overcome 
some of these issues.  

Current GPUs dedicated to HPC such as the NVIDIA 
Tesla C1060 can be seen as a set of 30 processors, 
clocked at 1.3 GHz, that oversee a large (4GB) graphics 
memory ([12], [13]). Since bringing data from the graphics 
memory to the GPU processor takes 400 to 600[13] 
cycles, these cycles may be used by the processor to 
perform other, independent computations. In order to do 
that, each processor receives a set of independent 
threads and interleaves execution of instructions of 
different threads. Best performance occurs when the set 
of available threads perform identical operations (such as 
on vector operations – see [11] for details). 

Porting our application to this architecture requires 
rewriting its kernel. The GPU computation starts with the 
output block and requires the velocity field to reside in 
graphics memory. A filtered input trace is dispatched to 
the graphics memory. The set of 30 processors compute 
all contributions of the input trace to the output volume at 
the rate of one contribution per thread, using enormous 
amount of fine grain parallelism. While the GPU computes 
all contributions of an input trace, the companion x86 
CPU reads and filters the next input trace. CPU and GPU 
synchronize whenever the next input trace is filtered and 
the current input trace is fully processed. At this point, the 
CPU delivers the new, filtered, input trace to the GPU 
memory. 

We recoded the kernel for the GPU using CUDA [13] and 
conducted execution time experiments on a research 
cluster of 36 quad-core, dual processor 2,33GHz Xeon 
nodes, accelerated by two NVIDIA Tesla C1060 GPUs 
per node, recently (late 2008) acquired by Petrobras. 
Table 7 contrasts its performance with previously tested 
machines, naming a “core” each of the 30 GPUs 
processors. 

 
Table 7: Single GPU performance 

System Cores/node Speed/core 
Quad core 8 49.01 
PS3 6 81.38 
GPU 60 136.09 
System Power/node (W) Speed/Power 
Quad core 415.13 0.94 
PS3 380.73 1.28 
GPU 734.94 11.11 
System Cost/node (US$) Speed/Price 
Quad core 6300 62.23 
PS3 600 813.80 
GPU 10000 816.54 

Results are astonishing, mainly when considering 
speed/power and speed/node and realizing that the GPU 
is an attachment to x86 nodes. The attachment costs 
around US$ 1850 per GPU (increase of 60%) plus the 
increase in power consumption (around 80%), but it 
speeds up the computation by a factor of 17. The 
incremental add-on to a well established commercial 
product is a major quality of this disruptive technology. On 
the other hand, we should point out that not all x86 nodes 
are able to accommodate GPUs, especially because the 
GPUs should be installed in fast PCIe Gen2 slots in order 
to avoid bottlenecks to the data transfers. 

Table 8 contains the speed-up with the increase on the 
number of nodes, showing that the scalability of the 
software design is maintained. 

 
Table 8: GPU cluster parallel performance 

Slaves GPU 2 18 34 70 
Speed-up 2.00 17.87 33.19 67.81 
Efficiency 1.00 0.99 0.98 0.97 

 

We observe a very efficient speed-up within the present 
capacity of our GPU cluster. Velocity field reading at the 
beginning of output block processing, and output data 
writing at the end compromises less than 1% of total wall 
time. Trace reading takes 1.3% of total wall time, but 
since this time overlaps with GPU computation, it does 
not affect performance at all. 

In another test we increased CPU clock speed, CPU bus 
speed and CPU main memory speed by a factor not less 
than 20% in each item, the improved performance in our 
application was less than 1% showing that this application 
is GPU bound.  

 

Conclusions 

This paper probes the adequacy of the seismic imaging 
production software design to new trends in computer 
architecture. It describes design characteristics that were 
critical to the success of up to 3200 processors, or 36 
days production runs: algorithm organization, sequential 
efficiency, parallel scalability, dynamic load balance, and 
fault tolerance. It presents performance data on a variety 
of x86 processor technologies, from old single-core to 
recent quad-core nodes, as well as Blue Gene/L 
performance data and two samples of the many-core 
trend, the Sony PlayStation 3 and NVIDIA GPUs. Or, from 
another angle, experimental data allows sensing the 
adequacy of processor technology trends to the time 
migration algorithm. Probed trends are multi-core and 
many-core.  

Our measured data shows that the multi-core trend at 
current core per chip count is a viable substitute for the 
higher frequency single-core trend in any tested 
performance metric for time migration. It also shows that 
the many-core disruptive technology, represented by the 
Cell-based PS3 and by GPU attachments to x86 nodes, 
has the best performance in any metric, including an 
order of magnitude price/performance gain over any mass 
production system tested. But these gains have a major 
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cost – rewriting the application kernel to unleash the 
processing speed of these novel computer architectures. 

Our current software design survived quite well to the 
novel architectures. It kept its characteristics of 
accommodating multiple algorithms without any change to 
the user’s perspective. It also kept its macroscopic 
computational properties of scalability, dynamic load 
balance and fault tolerance. So far, adaptations to new 
computing environments were limited to its kernel, 
provided that the new environments are balanced. 

Porting the application kernel to GPU took 15 days 
against 90 days to PS3. To achieve high performance in 
CUDA programming is relatively easy. Due to the scalar 
approach, vectorization (including if statements) is 
transparent to developer, once the data has been copied 
to GPU memory (4GB) its access is pretty much the same 
as in regular C programming and the huge number of 
simultaneous threads automatically hides pipeline and 
memory latencies. On the other side, Cell programming 
requires the developer to manage explicit vectorization 
(with no vector masked instructions), memory access 
control of small pieces of data (less than 256KB) (e.g. 
double buffering using DMA) to hide memory latency, and 
explicit loop unrolling to hide pipeline latencies. Besides, 
code and data (including buffers) must fit 256KB, which is 
SPE memory capacity. For example, 25 seismic traces 
with 3000 samples will not fit in the SPE memory. 

Future work comprises measuring the performance of the 
depth migration on available machinery, as well as testing 
the resiliency of each solution. 

 
Acknowledgments 

The authors thank Petrobras for the long term research 
opportunity and for authorizing the public dissemination of 
research results. The authors gratefully acknowledge the 
continuous support of AMD, Intel, NVIDIA and IBM, 
including the early availability of prototype boards for 
performance measures. Blue Gene experiments would 
not be possible without the continuous support of Fabio 
Gandour and Marcelo L. Braunstein of IBM Brazil as well 
as José E. Moreira of IBM USA, among others.  

 

References 

 [1] D. E. Post and L. G. Votta, “Computational Science 
Demands a New Paradigm”, Physics Today 58(3), pp 35-
41, Jan 2005. 

 [2] H. Sutter, J. Larus, “Software and the Concurrency 
Revolution”, ACM Queue, Sep 2005. 

 [3] J. Dongarra, D. Gannon, G. Fox and K. Kenedy, “The 
Impact of Multicore on Computational Science Software”, 
CTWatch Quaterly 3(1), Feb 2007. 

 [4] D. E. Post and R. P. Kendall, “Software Project 
Management and Quality Engineering Practices for 
Complex, Coupled Multiphysics, Massively Parallel 
Computational Simulations: Lessons Learned from ASCI”, 
International Journal of High Performance Computing 
Applications 18(4), Dec 2004. 

 [5] OProfile, available at http://oprofile.sourceforge.net. 

 [6] S. Browne,  J. J. Dongarra, N. Garner, G. Ho and P. 
Mucci, “A Portable Programming Interface for 
Performance Evaluation on Modern Processors”, The 
International Journal of High Performance Computing 
Applications, 14(3), pp. 189-204, Mar 2000. 

 [7] W. Gropp and E. Lusk, “Fault Tolerance in Message 
Passing Interface Programs”, The International Journal of 
High Performance Computing Applications, 18(8), pp. 
363-372, Aug 2004. 

 [8] J. Panetta, P. R. P. Souza Filho, C. A. Cunha Filho, F. 
M. Roxo da Mota, S. S. Pinheiro, I. Pedrosa Jr, A. L. 
Romanelli Rosa, L. R. Monnerat, L. T. Carneiro and C. H. 
B. Albrecht, “Computational Characteristics of Production 
Seismic Migration and its Performance on Novel 
Processor Architectures”, Proceedings of the 19th 
International Symposium on Computer Architecture and 
High Performance Computing (SBAC-PAD), IEEE 
Computer Society, 2007. 

 [9] G. L. Chui, M. Gupta and A. K. Royyuru, Guest 
Editors, “Blue Gene”, IBM Journal of Research and 
Development, 49(2), pp. 189-500, May 2005. 

 [10] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, 
T. R. Maeurer and D. Shippy, “Introduction to the Cell 
Multiprocessor”, IBM Journal of Research and 
Development, 49(4), pp 589-604, Jul 2005. 

 [11] V. Volkov and J. W. Demmel, “Benchmarking GPUs 
to Tune Dense Linear Algebra”, SC’08, Nov 2008. 

 [12] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, SS. S. 
Stone, D. B. Kirk and W. W. Hwu, “Optimization Principles 
and Application Performance Evaluation of a 
Multithreaded GPU using CUDA”, Proceedings of the 13th 
ACM SIGPLAN Symposium on Principles and Practice of 
Parallel Programming, ACM Press, 2008. 

 [13] NVIDIA CUDA Programming Guide, available at 
http://www.nvidia.com/object/cuda_develop.html. 

 [14] “Exploiting the Dual FPU in Blue Gene”, available at 
http://www-03.ibm.com/systems/resources/systems 
deepcomputing pdf exploitingbluegenedoublefpu.pdf, 
page 3.

Eleventh International Congress of the Brazilian Geophysical Society 

http://oprofile.sourceforge.net/
http://www.nvidia.com/object/cuda_develop.html
http://www-03.ibm.com/systems/resources/systems

	 
	Abstract 
	Introduction 
	Seismic imaging software structure and capabilities 
	Performance on large clusters of multi-cores 
	Acknowledgments 

