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Abstract

Semblance is the mostly used coherence measure for pa-
rameter estimation from geophysical data. The best ex-
ample is velocity analysis in which the normal-moveout ve-
locity is extracted from common-midpoint (CMP) gathers.
In complete analogy to velocity analysis, semblance is also
applied to estimate Common-Reflection-Surface (CRS) pa-
rameters by means of the hyperbolic traveltime applied to
multicoverage data. In statistics, semblance is related to
the so-called second moment and in optimization theory,
to the least-squares solution of maximum signal energy as
a characterization of reflection events. Extensions of the
usual semblance can be defined by replacing second-order
by higher-order quantities. Here we found encouraging re-
sults by a natural extension of semblance to fourth order.
The introduced fourth-order semblance is applied to CRS
parameter estimation. Numerical examples show that the
search using fourth-order semblance is more reliable for
high noise levels.

Introduction

Since the famous work of Taner and Koehler (1969), sem-
blance has been a reliable measure of coherence in seis-
mic processing. Many applications like stacking velocity
analysis (Yilmaz, 1979), migration velocity analysis (Al-
Yahya, 1989; Schleicher and Biloti, 2007), filter techniques
(Reiter et al., 1993) or CRS stack (see, e.g., Höcht et al.,
1999) rely on semblance to detect the shape of reflection
events in seismic data. Semblance is known to depend
in various degrees on operator size (aperture and window
length) and noise level (Douze and Laster, 1979). More-
over, it is based on the assumption of white noise. There-
fore, it sometimes shows unpredictable behaviour if the
noise is actually coloured. For these reasons, many at-
tempts have been made to find a more stable measure of
coherence that depends less on the kind of noise in the
data or the choice of the parameters used in the analysis.
One of the most successful ones is differential semblance
(Symes and Kern, 1994).

Being a very robust and easy to calculate measure of co-
herence for a broad variety of situations, the second-order
coherence measure semblance has survived all these at-
tempts. Nonetheless, there exist particular situations,

where other coherency measures can be advantageous. In
this paper, we compare its behaviour to those of a first- and
a fourth-order coherence measure. We show that while in
conventional velocity analysis, there is no gain in replac-
ing semblance by one of the other measures, for the linear
search of the CRS stack (Müller, 1999), the fourth-order
measure is less dependent on aperture and noise level,
thus resulting in reliable estimates of the local slope more
often than when using conventional semblance.

Interpretation of Semblance in Statistics

One important step in the CMP (or CRS) stacking process
is to find pre-assigned curves or surfaces (e.g., hyperbolic
curves) that fit the reflection traveltimes in some best pos-
sible way. Of paramount importance is an accurate deter-
mination of the parameters that define the best-fit curves or
surfaces, as these convey most relevant information to be
extracted from the seismic data. Of course, due to the pres-
ence of noise, these tasks can be very difficult. Therefore,
it is necessary to have some measure to decide whether
some curve/surface fits the traveltimes. One possibility for
such a measure is the degree of alignment or coherence of
the seismic traces along the trial curves/surfaces.

Semblance is a quantitative measure of coherence, typi-
cally used for event characterization in noisy data sets, for
example seismic data. In a certain sense, semblance rep-
resents the energy of the stacked trace divided by the en-
ergy sum of all stacking traces within a given time window.
Mathematically, semblance is defined as
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Here, the inner summation represents the traces (index i)
along which the stack is performed; the outer summation
performs the stack for various time samples (index k), that
fall in a given time window of width 2w + 1. The window
width should be related to the length of the signal wavelet
of the event. The summation enhances the signal-to-noise
ratio of the resulting stack. In order to study semblance
as a statistical or optimization concept, it is convenient to
disregard the time-window summation. In other words, we
shall, for the moment, define the local semblance as the
simpler expression
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To describe the relationship between local semblance S2

and statistical quantities, it is convenient to consider, for
a given sample (u1, u2, . . . , uN ), the simple moment of
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order m, or simply m-moment, µm, defined by µm =hPN
i=1 u

m
i

i
/N , m = 0, 1, . . .. We readily note that µ0 = 1

and µ1 is the standard mean or average. With the help
of the above definitions, the local semblance S2 of equa-
tion (2) can be recast as

S2 = µ2
1/µ2. (3)

To generalize the local semblance to a corresponding
higher-order quantity (namely in terms of higher-order
moments), we introduce the central m-moments σm =hPN

i=1(ui − µ1)
m
i
/N , m = 0, 1, . . ., for which σ0 = 1 and

σ1 = 0. In particular, σ2 is called the variance, which can be
written as σ2 = µ2−µ

2
1. The various quantitiesσm measure

different dispersion attributes about the mean. Roughly
speaking, the variance carries information about the con-
centration of the sample in some interval around the mean.
A large value of the variance indicates a disperse distri-
bution. A small variance means that the data is clustered
around the mean.

For our purposes, we are only interested in moments of
even order, in fact for definiteness, fourth order. We ob-
serve that the local semblance S2 is naturally related to
the second-order moments (simple and central) by the re-
lationship σ2 = µ2 − µ2

1 = µ2(1 − µ2
1/µ2) = µ2(1 − S2), or,

equivalently,
S2 = 1 − σ2/µ2. (4)

Equation (4) is the key relation that enables us to extend
the semblance concept to higher (even) orders. Here, we
only consider the fourth order. In analogy to equation (4),
we define the fourth-order “local semblance” S4 as

S4 = 1 − σ4/µ4 = (µ1/µ4)
`
4µ3 − 6µ1µ2 + 3µ3

1

´
. (5)

As our final expression for the fourth-order coherency mea-
sure, which will replace the usual (second-order) sem-
blance, we re-introduce the (external) time-window umma-
tion of the original semblance definition in equation (1).
Thus, the final fourth-order semblance is defined as
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Interpretation of Semblance in Optimization The-
ory

As mentioned earlier, semblance is used in the CMP or
CRS stack as a measure of cohrerence along a specified
trial curve or surface through the seismic data. Let the vec-
tor u = (u1, u2, . . . , uN ) represent the amplitudes along
some curve/surface in the seismic section, for some limited
aperture around the central point that is being analysed.
We may assume that these values must be reasonably con-
stant if they are perfectly coherent, i..e., if they are aligned

along the correct traveltime curve/surface. Hence, we can
find the N -dimensional constant vector c = (x, x, . . . , x)
that is “closest” to u and to use their “distance” as a mea-
sure of the fit. There are many different ways to define the
distance betweenN -dimensional vectors u and c, some of
the possibilities being analysed below.

The first possibility is to minimize the average of the ab-
solute values of the differences of the xandu components,
|x− ui|, namely,

min
x

R1(x) ≡

"
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N. (7)

The residual R1 is known as the absolute residual and its
value at the mean,R1(µ1), is the well-known absolute stan-
dard deviation. The solution to equation (7) is given by
the median, x∗ = M, the value that is above (or below)
50% of the values of u. Without loss of generality, we
will assume that the elements of u are in ascending (or
descending) order. It is not difficult to see that the me-
dian can be computed as, M = u(N+1)/2 for N odd, and
M = [uN/2 + uN/2+1]/2 for N even. The minimal abso-
lute residual is then given by R1(M), from which we can
measure the fit by the expression,

S1 = 1 −R1(M)/R1(0). (8)

Clearly, S1 ≤ 1, and since R1(M) is the minimal residual,
we also have S1 ≥ 0. The less R1(M) is, the closer to one
S1 will be. In particular, S1 = 0 for M = 0 and S1 = 1
if u is a constant vector. The main drawback to work with
the first-order “semblance” function S1 is that it is a nondif-
ferentiable function. Moreover, there is no closed form for
S1, in the sense that we need to first compute M and then
compute the residual.

Let us next analyse a second-order type semblance func-
tion. It is a well-known result that the mean, x∗ = µ1, is the
solution of the quadratic (least-squares) optimization prob-
lem,

min
x

R2(x) ≡

"
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2

#ffi
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To see this, observe that (dR2/dx)(x) = 0 is equivalent
to
PN

i=1(x − ui) = 0. Since (d2R2/dx
2)(x) = 2/N > 0,

the zero of the derivative is the global minimizer. In other
words, the mean is the value that minimizes the root-mean-
square (RMS) residual,

p
R2(x). Substituting x∗ = µ1 in

the residual R2 we find

R2(µ1) =

"
NX

i=1

(ui − µ1)
2

#ffi
N = σ2, (10)

i.e., the minimal quadratic residual equals the second cen-
tral moment. As in the previous case, we can define the
relative measure of the fit as

S2 = 1 −R2(µ1)/R2(0) = 1 − σ2/µ2 = µ2
1/µ2. (11)

Note that this defines the “true” second-order semblance
function in correspondence with equations (2), (3), and
(4). Observe that, as in the case of the absolute resid-
ual, 0 ≤ S2 ≤ 1, with S2 = 0 if µ1 = 0 and S2 = 1 if
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u is a constant vector. The semblance function can also
be interpreted as the square of the cosine of the angle θ
between the amplitude vector u and the constant vector
c = (µ1, µ1, . . . , µ1),

cos2 θ =
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Increasing the order of the residual to four, let us now con-
sider the optimization problem,

min
x

R4(x)

"
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(x− ui)
4

#ffi
N, (13)

i.e., we are now attempting to minimize the fourth-order
(quartic) residual. Although the above minimization prob-
lem is very similar to its second-order counterpart (9), an
explicit optimal solution in this case cannot be easily found.
In fact, it involves the solution of the cubic polynomial equa-
tion, dR4(x)/dx = 4(x3 − 3µ1x

2 + 3µ2x − µ3)/N = 0.
The unique real solution, x∗ = κ, can be computed us-
ing Cardano’s formula, but the final expression cannot be
easily manipulated. The same applies for the quartic resid-
ual function R4 and the corresponding semblance func-
tion. This makes a fourth-order semblance function defined
through the deviation of the minimum residual hard to use.

However, there is another, computationally more appeal-
ing way of defining a fourth-order semblance-like function.
For this purpose, we replace the optimal quartic residual,
R4(κ), by the quartic residual at the mean,

R4(µ1) =

"
NX

i=1

(ui − µ1)
4

#ffi
N = σ4, (14)

which is equal to the fourth-order central moment σ4. Com-
puting the relative quartic residual, as we have done for the
absolute and quadratic residuals, we obtain

S4 = 1−R4(µ1)/R4(0) = µ1(4µ3−6µ1µ2+3µ3
1)/µ4, (15)

which is the expression for the fourth-order semblance
function, S4, given by equation (5). As in the cases of S1

and S2, we also note that S4 ≤ 1. However, we cannot
ensure that S4 ≥ 0, since R4(µ1) is not the minimal quartic
residual. In any case, S4 = 1 only if u is a constant vector,
as desirable, and S4 = 0 if µ1 = 0 as before.

Application to CRS Stack

The common reflection surface (CRS) method (see, e.g.,
Hubral et al., 1998) represents a natural extension of the
Commom Midpoint (CMP) method in two important as-
pects. Firstly, for each stacking trace location (now called
simply a central point), the CRS considers a supergather of
source-receiver pairs, arbitrarily located with respect to the
central point. In other words, the gather is not restricted to
the CMP condition. Secondly, not only the stacking veloc-
ity, but also other additional parameters are extracted from

the data. In the 2D situation, three parameters are deter-
mined for each central point and all zero-offset (ZO) travel-
time samples. The procedure is performed for all traveltime
samples.

To be able to stack traces from source-receiver pairs that
do not conform to the CMP condition, the CRS method uti-
lizes the (generalized) hyperbolic moveout,

T (x, h)2 = [T0 +A (x− x0)]
2 +B (x− x0)

2 +C h2, (16)

where x0 is the central point, x and h denote the midpoint
and half-offset coordinates of the source and receiver pair,
and T0 is the ZO traveltime at the central point. As shown in
Hubral et al. (1998), the parametersA,B andC are related
to physical quantities referred to as the CRS parameters or
attributes, A = [2 sin β]/v0, B = [2T0KN cos2 β]/v0, and
C = [2T0KNIP cos2 β]/v0, where β is the emergence an-
gle of the ZO ray with respect to the surface normal, KN

and KNIP are the curvatures of the N- and NIP-waves, re-
spectively, and v0 denotes the surface velocity (see Hubral
(1983)). All these quantities are evaluated at the central
point.

The search for the parameters A, B and C can be per-
formed in three main steps. First, for each pair (x0, T0),
we find the value of the parameter C that maximizes the
semblance function (S1, S2 or S4) for the amplitudes along
the hyperbolic traveltime within the respective CMP section
at x0. Denoting this CMP section by φ(h, t), we can write
that the vector, u = (ui), is given by ui = φ(hi, Ti), with
Ti = T (x0, hi) =

p
T 2

0 + C h2
i , i = 1, . . . , NC , where NC

is the number of traces considered inside some aperture.
After determination of all parameters, C, the CMP data is
stacked. The result of this first-step process is, then, a
panel C(x0, T0), as well as a stacked section, ψ(x0, T0).

The second step consists of the search for parameter A,
performed within the stacked section ψ(x0, T0). For each
pair, (x0, T0), we maximize the semblance S1. S2 or S4

of the amplitudes along the hyperbolic traveltime (16) con-
sidering h = 0 and B = 0. In other words, the sam-
ple vector, u = (ui), is now given by ui = ψ(x, Ti), with
Ti = T (x, 0) = T0 + A (x − x0), i = 1, . . . , NA, where
NA is again the number of traces considered inside some
aperture, now taken in the stacked section. Generally, NA

will be different from NC . Typically, NA should be chosen
smaller than NC .

In the third step, to find B, we repeat the search in the
stacked section, using the estimated value of A. For each
(x0, T0), we maximize the semblance for the amplitude vec-
tor, u = (ui) given by ui = ψ(x, Ti), with Ti = T (x, 0) =p

[T0 + A (x− x0)]2 +B (x− x0)2, i = 1, . . . , NC . Here,
the apertureNC in the stacked section must be larger than
NA.

Numerical experiments

To compare the behaviour of the different semblance func-
tions in the estimation of CRS parameters and stack, we
have applied the procedure described in the previous sec-
tion to a very simple synthetic data set. The seismic model
is depicted in Figure 1. It consists of a smooth reflector be-
low a homogeneous acoustic medium. We analyse the be-
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Figure 1: Model and central points for the synthetic exper-
iments.

haviour of the three semblance functions, S1, S2 and S4, for
two different central points and also using the correct value
of the zero-offset (ZO) (or stacked) time. Also shown in
Figure 1 are the two ZO rays at the two central points. For
each x0 we performed one thousand random tests for each
of five different sizes of the aperture (number of traces), 10,
20, 30, 50 and 70, and for each of four noise levels, 30%,
50%, 100% and 150%, respectively. An estimate of any pa-
rameter A, B or C is considered a success if the deviation
from the true value is less than 10%.

Estimation of CRS parameters

The results of the search for parameter C were almost the
same in all cases, with no significant advantage of using
any of the semblance functions. Parameter C was suc-
cessfully determined at both points x0 in over 90% of the
tests, even for the highest noise level, with any of the three
tested semblance functions. This confirms the well-known
robustness of the parameter C.

As opposed to the previous case, significant differences be-
tween the success rate for the different semblance func-
tions are now observed in the search for parameter A.
Again, we performed one thousand random tests for each
of five different sizes of the aperture (number of traces), 10,
20, 30, 50 and 70, and for each of four noise levels, 30%,
50%, 100% and 150%, respectively, at two differerent cen-
tral points x0 in the modeled zero-offset section (see Fig-
ure 2). The sought-for results of parameter A at the two
central points are the dips of the straight lines tangent to
the zero-offset reflection, as depicted in Figure 2.

Figures 3 and 4 depict the percentage of success for pa-
rameter A at x0 = 5 km and x0 = 0.0 km, respectively. As
can be observed, the search using S4 has a higher success
rate in almost every setting. The largest advantage of the
fourth-order semblance function is observed, as expected,
at the highest noise level.

Another conclusion from Figures 3 and 4 is that the search
for A is highly dependent on the chosen aperture. While
there is a high success rate for all aperture sizes at the
central point x0 = 0 km, the same is not true at the central
point x0 = 0.5 km. The reason is the stronger curvature

−1.5 −1 −0.5 0 0.5 1 1.5
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T
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e 
(s

)

ZO Section

Figure 2: Zero-offset section for the model in Figure 1.
Every 3rd trace is shown

of the reflection event at x0 = 0.5 km (see again Figure 2),
which makes it harder to fit a linear traveltime curve over a
larger aperture. Interestingly enough, an aperture of about
20 traces seems to work best at both central points, even
though Figure 2 indicates that around x0 = 0.5 km, the trav-
eltime function is approximately linear over a larger interval.
For this example, the aperture of 20 traces is equivalent to
about half the depth of the reflection point.

The final step is the detection ofB in the zero-offset section
using the estimated values ofA. Once more, we performed
one thousand random tests for each of five different sizes of
the aperture (number of traces), 10, 20, 30, 50 and 70, and
for each of four noise levels, 30%, 50%, 100% and 150%,
respectively, in the modeled zero-offset section (see Fig-
ure 2). Since our interest was in the different performances
of the different semblance functions, we carried out the set
of experiments using the exact value for A in the search for
B in order not to let the error in the estimation of A influ-
ence the estimation of B. As in the search for C, we found
no significant differences in success rate for B. However,
while the search for C was very robust, yielding high suc-
cess rates for any of the semblance functions, the search
forB is rather unstable and the success rates are quite low,
particularly for high noise levels. Instability of parameter B
is a well-known difficulty encountered by the CRS method.

Behaviour of stacked sections

The second experiment was devised to exemplify the dif-
ferent behaviour of the CRS stacked sections obtained us-
ing the different semblance functions. Due to the rather
poor performance of S1 in the statistical tests, and since
the standard procedure is to use S2, we only compare the
results using S2 and S4. We applied the CRS stacking tech-
nique to a complete synthetic dataset for a model with three
homogeneous layers separated by one curved and two hor-
izontal interfaces. To study the behaviour of the semblance
functions we simulated two types of noise. In the first test,
we added white noise of about 60% of the data amplitude.
For the second test, we used a lower noise level of about
30%, but convolved it with a Ricker wavelet so as to simu-
late colored rather than white noise.

Figure 5 shows the CRS stacked sections for the first test
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Figure 3: Percentage of success in finding parameterA in
the ZO-section for x0 = 0.5 km: S1 (blue), S2 (green) and
S4 (red). From top to bottom the number or traces within
the aperture increases: 10, 20, 30, 50 and 70. The ratio
aperture/depth also increases: 0.3, 0.5, 0.8, 1.0 and 1.5.
In the horizontal axis is indicated the level of the added
noise: 30%, 50%, 100%, and 150%.

data set. The left column shows the results of using S2 and
the right column those of S4. In the top row, we see the
stacked sections after the search for C. Though the first
reflector is slightly better visible in the S4 section, the over-
all impression is of comparable quality. This is the expected
result after the above statistical tests.

In the center row of Figure 5, we see the stacked sections
after the search of A. This search is performed in the sec-
tions shown in the top row. As expected from the statistical
analysis, the search forA was much more successful when
using S4. The second and third reflectors are much better
visible in the right panel than in the left one. As the next
step, the B values are searched for individually in the cen-
ter panels. However, because of the small success rate of
the B search, the stacked sections do not change much.

The bottom row of Figure 5 shows the final CRS stacked
section after a simultaneous search for the best triplet of
values A, B, and C. The previously detected individual
values of A, B, and C are used as initial values for this
search. The higher quality of the right panel is clearly vis-
ible. The main reason for the better quality of the final
stacked section are the better initial values for the simul-
taneous search, particularly A. The search itself is rather
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Figure 4: Percentage of success in finding parameterA in
the ZO-section for x0 = 0.0 km: S1 (blue), S2 (green) and
S4 (red). From top to bottom the number or traces within
the aperture increases: 10, 20, 30, 50 and 70. The ratio
aperture/depth also increases: 0.3, 0.5, 0.8, 1.0 and 1.5.
In the horizontal axis is indicated the level of the added
noise: 30%, 50%, 100%, and 150%.

independent of the choice of the semblance function. Si-
multaneous search with S2 using the initial values from the
S4 individual searches results in a stacked section of com-
parable quality.

Figure 6 shows the corresponding results for the second
test with colored noise. While the overall observations re-
main very similar, we note that even the search forC seems
to be more stable with the fourth-order semblance. Appar-
ently, the presence of colored noise in the data is more of
a disturbance to a standard S2 coherence analysis than to
the one using S4.

Conclusions

In this paper, we have introduced a new fourth-order sem-
blance function. Moreover, we have evaluated its behaviour
in CRS parameter estimation and stack. We have seen that
the new fourth-order semblance function produces com-
parable results for the searches of the curvature param-
eters, but superior results for the linear search. The fourth-
order measure is less dependent on aperture and noise
level, thus resulting in reliable estimates of the local slope
more often than when using conventional semblance. As a
consequence, the fourth-order-semblance based final CRS
stack after the whole search procedure is of better quality
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Figure 5: Stacked sections after the searches, with 60%
white noise. Top: C. Center: A. Bottom: Simultaneous.
Left: S2. Right: S4.

than the corresponding one based on second-order sem-
blance stack.

Another conclusion from our analysis is that the linear
search is highly dependent on the chosen aperture. De-
pending on the curvature of the reflection event in the
stacked section, the success rate can decrease dramati-
cally with increasing aperture. For our examples, an aper-
ture of about half the depth of the reflection point produced
the best results.
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Hubral, P., Höcht, G., and Jäger, R. (1998). An introduction
to the common reflection surface stack. 60th EAGE Con-
ference & Exhibition, Expanded Abstracts, Session:01–
19.

Müller, T. (1999). The Common Reflection Surface Stack
Method. PhD thesis, Universität Karlsruhe (TH).
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