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with respect to the model parameters. As the model to 
data relationships are non linear, expression (3) is solved 
iteratively until convergence. 

Uncertainty and data resolution 

In the neighborhood of the optimal model, the posterior 
covariance matrix is given by,  

                            Cm
post = A-1 Cm ,                      (4) 

and the seismic data resolution power matrix for a model 
local perturbation honoring the prescribed covariance is 
(Bosch, 2005), 

                              Pseis = A-1 Rm
1/2 ,                   (5) 

where Rm
1/2 is a square root of the prior model correlation 

matrix, i.e. the standardized square root of the prior model 
covariance matrix. The diagonal elements of the posterior 
covariance are the variance of the estimated model 
parameters. The diagonal elements of the seismic 
resolution power matrix are in the range [0,1] and indicate 
the contribution of the seismic data to the property 
estimation. As a complement, the prior model resolution 
power matrix is, Pmod = I – Rseis , where I is the identity 
matrix. 

Figure 1 shows in two synthetic tests the effect of the 
model time correlation in the posterior uncertainty and 
seismic resolution power, using the above seismic 
inversion formulation. For these examples we co-simulate 
the mass density, compresional and shear velocities 
according to a particular geostatistical model (mean trend 
and covariance for the model series in time) and proceed 
with the geostatistical inversion of the calculated seismic 
data, with the same geostatistical parameters. In figure 1a 
we used a Gaussian covariance function with 20 ms 
range for Vp and 100 ms range for Vs and density. In 
figure 1b we show results of a rougher property model 
corresponding to mixed nugget effect and Gaussian 
covariance models with 20 ms range for the three 
properties. The figure shows that in the smoother time 
profile case, figure 1a, the posterior uncertainty is smaller 
and the seismic data resolution power higher than in the 
second case. The source seismic wavelet and the 
incidence angles considered are the same in the two 
cases.  

A better recognized effect on the improvement of the 
precision and data resolution power in elastic seismic 
inversion is related with the angle range and the number 
of partial angle stacks considered in the inversion. 
Figures 2a, 2b and 2c show the cases of one, two and 
eight angles considered for the same geostatistical 
parameters as in figure 1a, which was obtained with the 
inversion of three incidence angles data. From these 
examples we confirm that the elastic inversion of seismic 
reflection data is effective for the estimation of the shear 
velocity and mass density if an appropriate angle 
sampling is done.  On the other hand, the resolution and 
accuracy of the compresional velocity estimation is 
commonly larger than for the other two properties 
considered 

 

Field example 

We applied the method to field data in a gas reservoir. 
The gas reservoir produces a large reflection with AVO 
effect typical of a class III reservoir. However, other 
strong reflections are also present, which result from 
lithological changes. Also the continuity of the gas bearing 
sands was one of the issues to explore. 

For the application to the field case, we characterize the 
covariance of the mass density, compresional and shear 
velocities obtained from well-log data. First, these 
properties were upscaled from the original well-log 
sampling to the appropriate time sampling at the seismic 
resolution.     Considering   the    frequency    content   we 

 
 
Figure 1: Synthetic tests for the estimation of the 
compresional velocity, seismic velocity and density from 
the inversion of three incidence angle seismic data (15°, 
30° and 50°) for target models honoring different time 
covariance functions: property profiles are smoother in 
case (a) than in case (b). The prior profiles (red), the 
target profiles (green) and the estimated profiles (black) 
are shown for each property plot. The thickness of the 
bands describes the posterior uncertainty in ± 1 standard 
deviation and the color indicates the seismic data 
resolution power. 
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modeled the medium  with 4 ms TWT layers, which 
correspond approximately to a quarter of the dominant 
seismic signal period. Upscaling the mass density follows 
plain average in depth. However, the velocity upscaling 
requires Backus average. Figure 3 shows the 
experimental covariance of the upscaled properties and 
the corresponding modeled covariance functions. The 
cross-covariances were also modeled. The covariance 
functions are fitted by a regression procedure to the 
experimental covariance data and used in the 
construction of the model covariance matrices in 
expressions (2-5). A similar geostatistical well-log data 
characterization is done by Bosch et al. (2007) in the 
context of an oil reservoir. 

We inverted the seismic data in three partial stacks for 
angle ranges centered at 15°, 30° and 40° to jointly 
estimate the mass density, compresional and shear 
velocity fields. From the three properties, we also 
reconstructed several elastic modulus and ratios of 
common interest. Among the different elastic parameters, 
we found that the mass density was particularly useful in 
this area for the identification of the gas reservoir, 

 
 
Figure 2: Synthetic tests results for the compresional 
velocity, seismic velocity and density corresponding to 
the same target model inverted in Figure 1a. In these 
cases the elastic parameters are jointly estimated with 
the inversion of: (a) one incidence angle seismic data of 
30°, (b) two angles data of 15°and 30° , and (c)  eight 
angles data of  11°, 15°, 30°, 25°, 35°, 40°, 50° and 55°. 
Plots description is the same as in Figure 3. 

 
 
Figure 3: Experimental covariance (red line) calculated 
from the upscaled well-log derived compresional velocity, 
shear velocity and mass density, and the covariance 
function models (blue line) fitted to the covariance data. 
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characterized by low density. On the other hand, the 
shear wave velocity correlated well with lithology in the 
area: high shear velocities in sands and low shear 
velocities in shale. Figure 4 shows the mass density and 
shear velocity estimated from the elastic inversion with 
indications of the reservoir location. Well-log derived 
mass density and shear velocity are superposed at the 
location of two wells for comparison.  

Conclusion 

Elastic seismic inversion is a useful tool in reservoir 
characterization as it maps seismic amplitudes to elastic 
medium properties, related to lithology, fluid and porosity. 
We improve common formulation of the elastic seismic 
inversion with the definition of an adequate geostatistical 
model for the elastic medium properties based on detailed 
modeling of well-log derived elastic parameters. This 
characterization is done at a scale commensurable with 
the seismic signal. The geostatistical model regularizes in 
a realistic manner the elastic property model. In addition 
to compresional seismic velocity, shear velocities and 
densities are reliably estimated by the elastic inversion 

method, and have a relevant contribution to the reservoir 
characterization.  
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Figure 4: Density and shear velocity estimated with the elastic inversion for a time window including the reservoir stratum. The 
corresponding properties calculated from the well-log data and upscaled to seismic resolution are superposed at the locations 
of two wells for comparison with the inversion results. 
 


