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Abstract

In this work we describe a method for joint inversion of
multi-angle partial stacks under geostatistical prior
constraints for the estimation of the parameters of an
isotropic elastic medium. The method is based on fitting
the calculated and observed seismic data and minimizing
the deviations of the elastic model configuration from the
prior configuration, which is obtained by statistical
characterization of well-log data. The statistical
component of the model correlates vertically (in time) the
CDP elastic properties, regularizing the model to the well-
log spatial statistics. Lateral property correlations are not
included in this work. We define an appropriate measure
of the resolving power of the seismic data for spatially
correlated models, and illustrate the improvement of the
elastic properties resolution with the number of angle
stacks considered and the incidence angle range. We
show results for a field case, corresponding to a class Ill
gas reservoir, where the mass density and shear
velocities estimated from the elastic inversion are key
information for the identification of the gas bearing sands.

Introduction

The goal of seismic inversion is to map seismic reflections
into intervallic meaningful physical properties, providing
valuable information for fluid and lithology discrimination.
Different types of spatial regularization methods are used
to constraint the inversion. Common methods are the
sparse spike and the Tikonov approaches, among others.
The spatial regularization of the property fields imposes a
texture (variability and spatial correlation) to the resulting
configuration, which should be as realistic as possible. An
approach that we follow in this work is to honor the
texture and correlations of the elastic fields estimated
from well-logs after appropriate transformation to the
seismic resolution scale, using standard geostastistical
characterization: modeling the covariance and cross-
covariance functions.

The issue of spatial regularization is important in the
context of seismic inversion, as it is related with the data
resolution of the estimated properties. The data resolution
concept quantifies the contribution of the data to the
estimated configuration. In its original formulation (Backus
and Gilbert, 1968), it measures the proportion of a true
model perturbation that is mapped into the estimated

model after the inversion of the corresponding calculated
data. The data resolution depends (Bosch et al., 2005)
on the spatial model regularization. In general the data
resolution is larger when the model regularization is
commensurable with the information scale content of the
observed data.

Elastic seismic inversion

In a statistical framework the seismic inversion result is
modeled with a posterior probability density defined over
the model parameter space,

o(m) = ¢ L(m) p(m) , 1)

where L(m) is the seismic likelihood function and p(m)
the prior probability density for the model parameters.
Here, we describe the elastic isotropic medium with the
mass density, compresional velocity and shear velocity,
defined in a sequence of horizontal layers of equal travel
time. Thus, our model parameters array, m, have here
3 x N dimensions, with N being the number of layers at
the CDP model. For each CDP location we solve for the
model parameters that maximize the probability density.
The seismic likelihood measures the proximity between
the observed seismic data and the corresponding
calculated seismic data. The seismic data is calculated by
a convolutional model using Zoeppritz equations and
compared with partial angle stacks obtained from the
seismic data.

We model the prior information with a multivariate
Gaussian joint probability density on the model parameter
space,

p(m) =exp [-1/2 ( (m - mprior)T Cm_1 (m — myion))], (2)

with myior being the prior model for the elastic parameters
and C,, the model covariance matrix. For the definition of
the model covariance we fully characterize the covariance
and cross-covariances of upscaled well-log derived
elastic properties: here, the mass density, compresional
and shear seismic velocities.

To solve for the maximum probability model configuration
in expression (1) we apply the Newton’s method,
obtaining the expressions,

A=(I+CnG'C4tG),
b = myior—m + Cy, G’ Cd-l(dobs_ dearc), (3)
A Am =b,

for the curvature matrix A, the steepest ascent direction
b, and the equation for the model update Am. Above, Cy ,
is the data covariance matrix, I is the identity matrix, and
G, is the matrix of the derivatives of the calculated data
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with respect to the model parameters. As the model to
data relationships are non linear, expression (3) is solved
iteratively until convergence.

Uncertainty and data resolution

In the neighborhood of the optimal model, the posterior
covariance matrix is given by,

Cr’™ = A" Cpy, )

and the seismic data resolution power matrix for a model
local perturbation honoring the prescribed covariance is
(Bosch, 2005),

Pgeis = At lel2 ) (5)

where le’2 is a square root of the prior model correlation
matrix, i.e. the standardized square root of the prior model
covariance matrix. The diagonal elements of the posterior
covariance are the variance of the estimated model
parameters. The diagonal elements of the seismic
resolution power matrix are in the range [0,1] and indicate
the contribution of the seismic data to the property
estimation. As a complement, the prior model resolution
power matrix is, Pmog = I — Rgijs , Wwhere I is the identity
matrix.

Figure 1 shows in two synthetic tests the effect of the
model time correlation in the posterior uncertainty and
seismic resolution power, using the above seismic
inversion formulation. For these examples we co-simulate
the mass density, compresional and shear velocities
according to a particular geostatistical model (mean trend
and covariance for the model series in time) and proceed
with the geostatistical inversion of the calculated seismic
data, with the same geostatistical parameters. In figure 1a
we used a Gaussian covariance function with 20 ms
range for Vp and 100 ms range for Vs and density. In
figure 1b we show results of a rougher property model
corresponding to mixed nugget effect and Gaussian
covariance models with 20 ms range for the three
properties. The figure shows that in the smoother time
profile case, figure 1a, the posterior uncertainty is smaller
and the seismic data resolution power higher than in the
second case. The source seismic wavelet and the
incidence angles considered are the same in the two
cases.

A better recognized effect on the improvement of the
precision and data resolution power in elastic seismic
inversion is related with the angle range and the number
of partial angle stacks considered in the inversion.
Figures 2a, 2b and 2c show the cases of one, two and
eight angles considered for the same geostatistical
parameters as in figure 1la, which was obtained with the
inversion of three incidence angles data. From these
examples we confirm that the elastic inversion of seismic
reflection data is effective for the estimation of the shear
velocity and mass density if an appropriate angle
sampling is done. On the other hand, the resolution and
accuracy of the compresional velocity estimation is
commonly larger than for the other two properties
considered
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Figure 1: Synthetic tests for the estimation of the
compresional velocity, seismic velocity and density from
the inversion of three incidence angle seismic data (15°,
30° and 50°) for target models honoring different time
covariance functions: property profiles are smoother in
case (a) than in case (b). The prior profiles (red), the
target profiles (green) and the estimated profiles (black)
are shown for each property plot. The thickness of the
bands describes the posterior uncertainty in + 1 standard
deviation and the color indicates the seismic data
resolution power.

Field example

We applied the method to field data in a gas reservoir.
The gas reservoir produces a large reflection with AVO
effect typical of a class Il reservoir. However, other
strong reflections are also present, which result from
lithological changes. Also the continuity of the gas bearing
sands was one of the issues to explore.

For the application to the field case, we characterize the
covariance of the mass density, compresional and shear
velocities obtained from well-log data. First, these
properties were upscaled from the original well-log
sampling to the appropriate time sampling at the seismic
resolution. Considering the frequency content we
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Figure 2: Synthetic tests results for the compresional
velocity, seismic velocity and density corresponding to
the same target model inverted in Figure la. In these
cases the elastic parameters are jointly estimated with
the inversion of: (a) one incidence angle seismic data of
30°, (b) two angles data of 15°and 30° , and (c) eight
angles data of 11°, 15°, 30°, 25°, 35°, 40°, 50° and 55°.
Plots description is the same as in Figure 3.
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Figure 3: Experimental covariance (red line) calculated
from the upscaled well-log derived compresional velocity,
shear velocity and mass density, and the covariance
function models (blue line) fitted to the covariance data.

modeled the medium with 4 ms TWT layers, which
correspond approximately to a quarter of the dominant
seismic signal period. Upscaling the mass density follows
plain average in depth. However, the velocity upscaling
requires Backus average. Figure 3 shows the
experimental covariance of the upscaled properties and
the corresponding modeled covariance functions. The
cross-covariances were also modeled. The covariance
functions are fitted by a regression procedure to the
experimental covariance data and used in the
construction of the model covariance matrices in
expressions (2-5). A similar geostatistical well-log data
characterization is done by Bosch et al. (2007) in the
context of an oil reservoir.

We inverted the seismic data in three partial stacks for
angle ranges centered at 15°, 30° and 40° to jointly
estimate the mass density, compresional and shear
velocity fields. From the three properties, we also
reconstructed several elastic modulus and ratios of
common interest. Among the different elastic parameters,
we found that the mass density was particularly useful in
this area for the identification of the gas reservoir,
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Figure 4: Density and shear velocity estimated with the elastic inversion for a time window including the reservoir stratum. The
corresponding properties calculated from the well-log data and upscaled to seismic resolution are superposed at the locations

of two wells for comparison with the inversion results.

characterized by low density. On the other hand, the
shear wave velocity correlated well with lithology in the
area: high shear velocities in sands and low shear
velocities in shale. Figure 4 shows the mass density and
shear velocity estimated from the elastic inversion with
indications of the reservoir location. Well-log derived
mass density and shear velocity are superposed at the
location of two wells for comparison.

Conclusion

Elastic seismic inversion is a useful tool in reservoir
characterization as it maps seismic amplitudes to elastic
medium properties, related to lithology, fluid and porosity.
We improve common formulation of the elastic seismic
inversion with the definition of an adequate geostatistical
model for the elastic medium properties based on detailed
modeling of well-log derived elastic parameters. This
characterization is done at a scale commensurable with
the seismic signal. The geostatistical model regularizes in
a realistic manner the elastic property model. In addition
to compresional seismic velocity, shear velocities and
densities are reliably estimated by the elastic inversion

method, and have a relevant contribution to the reservoir
characterization.
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