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SUMMARY

We show that the wave equation solution using a conventional
finite-difference scheme, derived commonly by the Taylor se-
ries approach, can be derived directly from the rapid expansion
method (REM). After some mathematical manipulation we
consider an analytical approximation for the Bessel function
where we assume that the time step is sufficiently small. From
this derivation we find that if we consider only the first two
Chebyshev polynomials terms in the rapid expansion method
we can obtain the second order time finite-difference scheme
that is frequently used in more conventional finite-difference
implementations. We then show that if we use more terms
from the REM we can obtain a more accurate time integration
of the wave field. Consequently, we have demonstrated that the
REM is more accurate than the usual finite-difference schemes
and it provides a wave equation solution which allows us to
march in large time steps without numerical dispersion and is
numerically stable. We illustrate the method with post and pre
stack migration results.

INTRODUCTION

The acoustic wave equation has been widely used for model-
ing and reverse time migration of seismic data. In pre-stack
reverse time migration the source wave field is forward extrap-
olated and the recorded data are backward extrapolated in time.
The image is constructed by cross correlating the extrapolated
source and receiver wave fields at each time step. The finite-
difference method has long been the common approach used
to extrapolate the wave fields forward and backward in time.
But to ensure high quality results, accurate approximations
are required for both the spatial and time derivatives (Dablain
(1985)). This is usually achieved numerically by using either
a very fine computation grid or very long finite-difference op-
erators. Otherwise, numerical errors, such as grid dispersion,
will be present in the data and will contaminate the signals of
interest (Liu et al. (2008)).

For increased spatial accuracy, the Fourier pseudo-spectral
method can be used to compute the spatial derivatives but in
most implementations the time derivative remains as a finite

difference operator. The Rapid Expansion Method (REM) pro-
posed by Kosloff et al. (1989) can instead be used to obtain a
more accurate time integration of the wave equation. In the
REM Chebyshev polynomials are used to expand the cosine
operator which appears in the exact solution of the wave equa-
tion. This solution method using different initial conditions
can be used to extrapolate wave fields forward or backward in
time from any time step.

Here we expand the cosine operator from the exact solution of
the acoustic wave equation in the same way as that used by the
REM approach. After that, we note that the result of the ex-
pansion has the same form as the Taylor series expansion when
we use a specific analytical expression for the Bessel function.
Then we verify that if we consider only two terms in the REM
it reduces to the same equations used for the second order fi-
nite difference time approximation. The use of more terms in
the REM results in a procedure that is numerically stable even
for large time steps. When REM is combined with a pseudo-
spectral method for the spatial derivatives, a highly accurate,
numerically stable result can be obtained with less computa-
tion than a conventional finite difference approach would re-
quire to achieve the same level of accuracy.

THEORY

Acoustic wave equation - An exact solution

For acoustic wave propagation, the governing equation has the
form

∂ 2 p
∂ t2 =−L2 p; with −L2 = c2

(
∂ 2

∂x2 +
∂ 2

∂ z2

)
(1)

The formal solution of equation (1), with the initial conditions
∂ p
∂ t (t = 0) = ṗ0 and p(t = 0) = p0 is given by the following
expression:

p(t) = cos(Lt) p0 +
sin(Lt)

L
ṗ0 (2)

The wavefields p(t + ∆t) and p(t − ∆t) can be evaluated by
equation (2). Adding these two wavefields results in:

p(t +∆t)+ p(t−∆t) = 2 cos(L∆t) p(t) (3)

Now if we take for cos(L∆t) its second (1− (L∆t)2

2 ) and fourth

order (1− (L∆t)2

2 + (L∆t)4

24 ) Taylor series expansion, we obtain

p(t +∆t)−2 p(t)+ p(t−∆t) =−∆t2 L2 p(t) (4)

and

p(t +∆t)−2 p(t)+ p(t−∆t) =−∆t2 L2 p(t)+
∆t4

12
L4 p(t)

(5)
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which are the second-order and fourth-order standard finite-
difference schemes (Etgen (1986); Soubaras and Zhang (2008)).

The Rapid Expansion Method (REM)

As presented by Kosloff et al. (1989) in the Rapid Expansion
Method the cosine function given by equation (3) can be also
expressed in the following form:

cos(L∆t) =
∞∑

k(even)

Ck Jk(∆tR)Qk

( iL
R

)
(6)

where C0 = 1 and Ck = 2 for k ≥ 1. Jk represents the Bessel
function of order k and Qk(w) are modified Chebyshev poly-
nomials. Since (6) contains only even polynomials, it is more
convenient to use the alternative relation

Qk+2(w) = (4w2 +2)Qk(w) − Qk−2 (w) (7)

The recursion is initiated by:

Q0(w) = 1 and Q2(w) = 1+2w2

For 2D wave propagation the value of R is approximated given

by R = πcmax

√
1

dx2 + 1
dz2 , with cmax the highest velocity in the

grid and dx and dz are the spatial grid spacing (Tal-Ezer et al.
(1897)). The sum in (6) is known to converge exponentially for
k > ∆tR and, therefore, the summation can be safely truncated
with a k value slightly greater then ∆t R (Tal-Ezer et al. (1897)).

Finite-Difference solution - Special case of REM

Now we can rewrite equation (3) again, but we replace the
cosine function by equation (6), thus we have:

p(t +∆t)+ p(t−∆t) = 2

 ∞∑
k(even)

Ck Jk(∆tR)Qk

( iL
R

) p(t)

(8)
The Chebyshev polynomials, present in the equation (8), can
also be rewritten in terms of Q2(w) as

Q0(w) = 1

Q2(w) = 1+2w2

Q4(w) = 2Q2
2(w)−Q0(w) = 1+8w2 +8w4

Q6(w) = 4Q3
2(w)−3Q2(w) = 1+18w2 +48w4 +32w6

Q8(w) = 8Q4
2(w)−8Q2

2(w)+Q0(w) =

= 1+32w2 +160w4 +256w6 +128w8 (9)

The Bessel functions, considering the argument z sufficiently
small, can be approximated by the following relation
(Abramowitz and Stegun (1965))

|Jk(z)|=
|z|k

2k k!
(10)

Substituting equation (9) and the Bessel functions for its ap-
proximate value (eq. 10) into the equation (8) and considering
only the contribution of the terms in (wz)n for n = 0,2,4·, we

obtain:

p(t +∆t)+ p(t−∆t) = 2

(
1+

z2

2
w2 +

z4

24
w4 +

z6

720
w6

+
z8

40320
w8 + · · ·

)
p(t) (11)

where w = iL
R and z = ∆t R.

Now, consider the first two terms of equation (11), which means
we are using only terms up to ∆t2, we then obtain:

p(t +∆t)+ p(t−∆t) = 2

(
1+

z2

2
w2
)

p(t) (12)

and substituting w by iL
R and z = ∆t R, we get:

p(t +∆t)−2 p(t)+ p(t−∆t) =−∆t2 L2 p(t) (13)

Then the approximation of the cosine function using the Cheby-
shev polynomials, results in the second-order finite difference
in time scheme as given before by (4).

In the same way, the 4th order approximation is obtained from
(11) if we consider terms up to ∆t4, then it is given by:

p(t +∆t)−2 p(t)+ p(t−∆t) =−∆t2 L2 p(t)+
∆t4

12
L4 p(t)

(14)
We can also rewrite the equation (14) in the following form:

1
∆t2

[
p(t +∆t)−2 p(t)+ p(t−∆t)− ∆t4

12
L4 p(t)

]
=−L2 p(t)

(15)
If now we compare equation (15) with equation (1), we notice
that the term on the left is the fourth order approximation for
the second order derivative in time (Dablain (1985))

∂ 2 p
∂ t2 =

1
∆t2

[
p(t +∆t)−2 p(t)+ p(t−∆t)− ∆t4

12
∂ 4 p
∂ t4

]
(16)

where

−L4 p(t) = L2 ∂ 2 p
∂ t2 =− ∂ 2

∂ t2 (−L2 p) =−∂ 4 p
∂ t4 (17)

So the L4 operator term has been replaced by ∂ 4/∂ t4.

We conclude that if we use the REM, and retain only the first
few Chebyshev terms we can obtain an approximate solution
for the wave equation that is more accurate than the conven-
tional Taylor series expansion used to solve (1) with the finite-
difference scheme given by equations (3) and 4).

EXAMPLE AND DISCUSSION

Laplacian computation and Stability

In the conventional Fourier pseudo spectral scheme using sec-
ond order finite differences in time the Laplacian operator L2

is computed only once for each time step. Normally, in the
REM approach the Laplacian must be computed severals times
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for each time step extrapolation. The number of term in the
cos(Ldt) expansion is determine by M > Rdt where R de-
pends on the maximum velocity and the spatial grid (dx,dz).
In the Fourier method to guarantee stability and accuracy
α = cmaxdt

dx < 0.2. As a test example, we consider a salt dataset
where cmax = 4.480km/s and dx = dz = .012km (Figure 2(a)
- velocity model). To migrate this dataset we need to have it
sampled in time at .001 s. But using the REM approach for the
original salt dataset, which is sampled at .008 s, the REM will
require 8 Chebyshev polynomials or 7 Laplacian computations
for each time step extrapolation, as indicated by the first curve
in Figure 1. If we resample the data to .002 s, we need to cal-
culate 2 Laplacians based on the criteria indicated. But consid-
ering the top curve of Figure 1, which is based on the criteria
that the magnitude of the Bessel function be less than 0.001,
well need to compute 6 Chebyshev terms for each time extrap-
olation. The migration results for the .002 s resampled data
are shown in Figure 2(b) and Figure 2(c), which were obtained
with 3 and 6 polynomials terms or 2 and 5 Laplacian computa-
tions for each time step extrapolation, respectively. The result
shown in Figure 2(b) was obtained with 3 terms (Qo,Q2,Q4),
which is a 4th order approximation in time. This result is now
reasonable, but the results with 6 terms (Figure 2(c)) produced
a better image for the the salt flank. The result show in Fig-
ure 2(d), using the original dataset which is sampled at .008 s,
was also obtained with 8 terms. This result is almost identical
with Figure 2(c), and it has better signal level in the sub-salt
part of the image and was obtained with less computation cost
compared to the result for the .002 s dataset computed with 6
terms.

Pre-stack migration result

We now illustrate the use of the REM method for the pre stack
deth imaging of a 2D line from the EAEG salt model. The
forward and backward time extrapolations were done for .008
sec time steps. The spatial sampling intervals were .02 km in
x and z. The input data consisted of 35 shots. The first shot
was located at 3.0 km and then every .2 km along the line.
675 receivers, every .02 km along the top of the section, for
every shot were used in the RTM. Each shot record was in-
dividually migrated; common image gathers were formed and
then stacked to produce the final image. A pseudo spectral
method was used to compute the spatial derivatives. For the
source time response a delta function was used. To be conser-
vative, 16 Chebyshev polynomial terms were used for every
time step. This was decided based on the magnitude of the
Bessel function being greater than .0001. (Less stringent cri-
teria would lead to fewer terms and improved performance.)
Figure 3 shows the stacked common image gathers. For dis-
play purposes a high pass filter was used. For this problem
a 2nd order time finite difference scheme would require that
the wave field snap shots be computed every .002s for a stable
result.

We note here that for REM RTM little additional storage was
required compared to a 2nd order finite difference solution.
This is because the Chebyshev polynomials were integrated as
they were computed for both the source and receiver extrapo-
lations.

Figure 4 compares two REM RTM results. On the left the
image was formed using only 8 Chebyshev polynomials while
on the right 16 were used. All other parameters and data were
identical to that of Figure 3. Figure 4 (right) is the same data
as Figure 3 but displayed in more detail. We can see that above
the salt the results are for all practical purposes identical. But
beneath the salt the more accurate time calculation Figure 4
(right) results in more detail and better signal to noise ratio for
the sub salt events. However, the differences are overall small
and in many cases the factor of 2 computational speed up may
be more important. For the 8 polynomial example the time per
shot was 5.6 minutes while for the 16 polynomial case the time
was 11.8 minutes on a Linux PC.

Finally, we note that for the source calculation we could have
calculated all the Chebyshev polynomials in advance and then
used these to generate the source snap shots for any time needed,
whenever we need them for imaging. This may have some ad-
vantages but requires the storage of all the Chebyshev polyno-
mials.

CONCLUSIONS

We have successfully applied the rapid expansion method for
time stepping to the reverse time migration of two synthetic
salt datasets. We used an exact solution of the acoustic wave
equation and showed that the rapid expansion method can be
used directly and suggested 2 ways to limit the number of
terms required in the integration of the Chebyshev polynomi-
als. Then, by using an analytical approximation for the Bessel
functions, for sufficiently small time steps, we obtained dif-
ferent approximations for the second order finite difference
time derivative. We showed that as we use more terms in the
Chebyshev polynomial expansion we can obtain a more accu-
rate time integration. This is confirmed by numerical exam-
ples where the REM was combined with the Fourier pseudo
spectral method for the spatial derivatives. We conclude that
the REM for the time stepping combined with pseudo spec-
tral operators for the spatial derivatives can be used to obtain
numerically stable results with less computational effort than
a conventional finite difference time stepping approach for the
same level of accuracy. This suggests that this approach is use-
ful primarily when highly accurate results are required.
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Figure 1: Plot of numbers Chebyshev polynomials required by
each time step by REM versus time sample data interval.

Figure 2: Velocity model (a); RTM pos-stack results using the
resample data to 2ms: REM with 3 terms (b), with 6 terms (c)
and the RTM result with REM using the original data (8 ms),
but with 8 terms (d)
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Figure 3: Pre-stack reverse time migration (RTM) by REM with time stepping obtained with 16 terms.

Figure 4: RTM result: Zoom of the sub-salt imaging for the REM with 8 terms (left) and the REM with 16 terms (right)
.
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