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Abstract

For modern long-offset acquisition geometries, a
hyperbolic traveltime approximation is no longer
sufficient to flatten the CMP gather because of
medium inhomogeneity or anisotropy. For trans-
versely isotropic media with a vertical symmetry axis
(VTI media), just two traveltime parameters are suffi-
cient for performing all time-related processing. Us-
ing an estimate of the NMO velocity from a hyperbolic
velocity analysis, one can estimate the anisotropic
parameter from a more general traveltime approxi-
mation. We extend this two-step procedure using a
more accurate nonhyperbolicity term in the traveltime
approximation. The used traveltime approximations
allow to predict the bias in the NMO velocity esti-
mate, thus providing a means of correcting both the
estimated NMO velocity and the resulting anisotropy
parameter value. By means of a numerical example,
we demonstrate that the estimation of both traveltime
parameters is improved considerably.

Introduction

The velocity model plays a key role in the process-
ing and migration of seismic reflection data. Conven-
tional velocity analysis (Dix, 1955; Yilmaz, 1987) by
the common-midpoint (CMP) method fits a hyperbolic
traveltime approximation to a seismic reflection event
in a CMP section. In this procedure, a single trav-
eltime parameter, usually expressed as the normal-
moveout (NMO) velocity, is estimated using a mea-
sure of the quality of the fit. However, for modern
long-offset acquisition geometries, a hyperbolic trav-
eltime approximation is no longer sufficient to flatten
the CMP gather because of medium inhomogene-
ity or anisotropy (Alkhalifah et al., 1996; Toldi et al.,
1999). Many authors proposed alternative ideas of
how to extract seismic velocities from the data. One
idea is to use seismic diffractions (Harlan et al., 1984;
Landa and Keydar, 1998; Fomel et al., 2007) to ex-
tract information about velocity. Schleicher et al.
(2008) used image-wave propagation to determine
the subsurface velocity model. Even for anisotropic

media, there are several methods to obtain informa-
tion about the velocity model (Tsvankin and Thom-
sen, 1994; Al-Dajani and Tsvankin, 1998; Sarkar and
Tsvankin, 2004; Behera and Tsvankin, 2007).

A particularly important work is that of Alkhalifah and
Tsvankin (1995). They demonstrated that, for trans-
versely isotropic media with a vertical symmetry axis
(VTI media), just two traveltime parameters are suffi-
cient for performing all time-related processing such
as NMO and dip-moveout (DMO) corrections. The
two traveltime parameters are usually expressed as
the NMO velocity vnmo and the nonhyperbolicity pa-
rameter η, a combination of the well-known weak
anisotropy parameters ǫ and δ of Thomsen (1986).
Using on these parameters, Alkhalifah and Tsvankin
(1995) derived a new traveltime approximation based
on continued fractions that describes nonhyperbolic
traveltimes for larger offsets.

Alkhalifah (1997) showed that using an estimate of
vnmo after a hyperbolic velocity analysis, one can
estimate the anisotropic parameter η from the more
general traveltime approximation of Alkhalifah and
Tsvankin (1995). He proposes a two-step procedure.
The first step uses conventional velocity analysis in
the CMP gather up to a short offset to estimate vnmo.
In the next step, assuming that the estimative of vnmo

is sufficiently accurate, he proposes to use farther off-
sets to estimate the anisotropy parameter η. As a
drawback of his method, he noted the strong sensi-
tivity of the η estimates on the quality of the estimated
NMO velocity.

In this paper, we apply the two-step procedure of
Alkhalifah (1997) using the new nonhyperbolic travel-
time approximations of Schleicher and Aleixo (2008),
based on anelliptic approximations (Fomel, 2004).
These traveltime approximations allow to predict the
bias in the NMO velocity estimate, thus providing a
means of correcting both the estimated NMO velocity
and the resulting η value. In this way, the extraction
procedure leads to more reliable estimates of vnmo

and η.

Method

For a homogeneous VTI medium the hyperbolic trav-
eltime approximation is only valid for small offsets,
and the velocity coefficient is an NMO velocity that
differs from the vertical velocity (Thomsen, 1986).
Extending the Taylor series of the traveltime approxi-
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mation up to fourth order does not extend the validity
range significantly (Tsvankin and Thomsen, 1994).
However, other types of traveltime approximation can
be found that are valid for longer offsets the most
famous one being (Tsvankin and Thomsen, 1994;
Alkhalifah and Tsvankin, 1995)

t2(x) = 1 + x2 −
2ηx4

1 + (1 + 2η)x2
. (1)

Here, we use the normalized half-offset, x =
h/τ0vnmo, and the normalized traveltime t(x) =
τ(x)/τ0, where h is half-offset and τ0 is the zero-
offset traveltime. Moreover, the anisotropy parameter
is

η =
ǫ − δ

1 + 2δ
(2)

and the normal-moveout (NMO) velocity

Vnmo = Vp0

√
1 + 2δ, (3)

where ǫ and δ are Thomsen’s (1986) parameters, and
Vp0 is the vertical P-wave velocity.

Alkhalifah (1997) proposed to use a hyperbolic ap-
proximation

t2(x) = 1 + x2 (4)

to estimate vnmo by a short-offset conventional ve-
locity analysis. Thereafter, assuming that the esti-
mate of vnmo is sufficiently accurate, the traveltime
correction of equation (1) can be used to estimate
the anisotropic parameter η. Introducing the notation

∆t2 = (1 + x2) − t2(x) =
2ηx4

1 + (1 + 2η)x2
(5)

for the traveltime correction of equation (1), η can be
obtained at a given normalized half-offset x from

η =
∆t2(1 + x2)

2x2(x2 − ∆t2)
. (6)

To measure ∆t2 in the data, Alkhalifah (1997) sug-
gests to apply an NMO correction using vnmo from
the first step and then compute ∆t2 = 1 − (t2(x) −
x2) = 1−t2cor, where tcor corresponds to the moveout
traveltime after NMO correction. The second quantity
needed in equation (6) is the normalized half-offset x.
Alkhalifah (1997) showed that the reliability of the es-
timate increases with increasing offset. Thus, equa-
tion (6) should be applied at the farthest offsets avail-
able.

Recently, Schleicher and Aleixo (2008) derived a set
of new more accurate traveltime approximations in
VTI media. These approximations have the form

t2(x) = 1 +
x2

Q
+ Bi

x2

1 + x2/Q
, (7)

where Q = 1 + 2η. For the factor Bi(η), they derived
five different forms, being

B1(η) = 2η/Q, (8)

B2(η) = 2η/(1 + η)Q, (9)

B3(η) = 2η/(1 + η)2, (10)

B4(η) = 2η/Q2, (11)

B5(η) = 8η(1 + η)/5Q. (12)

The aim of this work is to use traveltime approxi-
mations (7) in the two-step procedure of Alkhalifah
(1997) to obtain a more accurate estimative for pa-
rameter η. The first step of estimating vnmo remains
the same as before. The second step needs to be
slightly altered due to the different traveltime approx-
imation. To simplify the expressions, we introduce a
new traveltime parameter y defined as

y =
x2 − ∆t2

x2
. (13)

Manipulating equation (7), we can write

y =
Q + x2 + BiQ

2

Q2 + Qx2
. (14)

Substituting the different expressions for Bi in equa-
tion (14) and linearizing numerator and denominator
separately, we find for B1 to B4

y =
1 + 2η + x2 + 2η

1 + 4η + (1 + 2η)x2
, (15)

which leads to the following extraction formula for η:

η =
(1 + x2)(1 − y)

4y + 2x2y − 4
(16)

Correspondingly, we obtain for B5

y =
5 + 10η + 5x2 + 8η

5 + 20η + (5 + 10η)x2
, (17)

which results in the following expression for η:

η =
5(1 + x2)(1 − y)

20y + 10x2y − 18
. (18)

Using formulas (16) and (18), we can estimate η from
the picked traveltime at any chosen offset x using the
estimated value of y according to expression (13).
Here, ∆t2 is determined from the data as described
in connection with equation (6).

If the estimate of vnmo is precise, these estimates for
η are generally of higher accuracy than the ones ob-
tained with equation (6). However, they suffer from
the same sensitivity problems already reported by
Alkhalifah (1997). This is a severe drawback, since
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the estimate of vnmo in the first step is already influ-
enced by anisotropy. However, while traveltime ap-
proximation (1) does not predict such a behavior, ap-
proximations (7) do. Rewriting equation (7) as

t2(x) = 1 +
x2

Q
+ Bi

x2 + x4/Q − x4/Q

1 + x2/Q

= 1 +

(

Bi +
1

Q

)

x2 −
Bi

Q

x4

1 + x2/Q
,(19)

we see that in this description, the short-offset term
is already influenced by the presence of η, resulting
in an apparent NMO velocity

vap
nmo = vnmo/

√

Bi + 1/Q . (20)

For B1, we have B1 + 1/Q = 1. Thus, in this ap-
proximation, the NMO velocity does not depend on
η. However, for all other choices of Bi, the true NMO
velocity can be calculated from the apparent one by

vnmo = Civ
ap
nmo =

√

Bi + 1/Q vap
nmo . (21)

where the correction factor satisfies

Ci =
vnmo

vap
nmo

=
√

Bi + 1/Q < 1 . (22)

We thus expect apparent NMO velocities with vap
nmo >

vnmo. Equation (21) has an important consequence.
Once η has been estimated, this equation allows to
iteratively correct the estimate of vnmo with the esti-
mate of η until both values are consistent.

The iteratively procedure is summarized in the follow-
ing steps:

(1) Use hyperbolic velocity analysis for the shortest
offset to determine a first estimate for the apparent
NMO velocity vap

nmo.

(2) Use this NMO velocity estimate together with
equation (16) or equation (18) to obtain a first esti-
mate for η from the farthest offsets.

(3) Use the η estimate to correct the apparent NMO
velocity for an improved estimate vnmo accordint to
equation (21).

(4) While the correction factor Ci = Bi + 1/Q to vnmo

still significantly differs from 1, for instance 1−Ci > ǫ,
go to step (2) using the new vnmo estimate.

After convergence of this iterative procedure, the es-
timated parameters are the final estimates for η and
vnmo.

Numerical Examples

In this section we present some numerical examples
for the new expressions for the η extraction. We con-
sider a single-layer homogeneous VTI medium with
vnmo = 2.5 km/s. The value of η varies from 0.05

to 0.5. Figure 1 shows a synthetic seismogram in
such a medium for η = 0.3409, that represents the
Greenhorn shale (Jones and Wang, 1981), with ran-
dom noise with a signal-to-noise ratio of 10.
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Figure 1: Synthetic seismogram for horizontal reflec-
tor at 1 km depth below a homogeneous VTI layer
with η = 0.3409 and vnmo = 2.5 km/s. Signal-to-
noise ratio is 3.
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Figure 2: η extraction with formulas (6) (Tsvankin
and Thomsen, 1994), (16) (B1), and (18) (B5) using
the exact NMO velocity.

Our first experiment was to extract η using equa-
tions (16) and (18) under the assumption that vnmo

is known exactly. Of course, for this constant-velocity
layer, vnmo = v = 2.5 km/s. We have tested the ex-
traction for 50 different values of η between η = 0.01
and η = 0.5. Figure 3 compares the relative error of
the estimates for η with formulas (6) (Tsvankin and
Thomsen, 1994), (16) (B1), and (18) (B5). We see
that the extraction using formula (16) is the most ac-
curate one, with a relative error below 1% for the
complete range of η. Formula (18) is slightly less
accurate, with a error of about 0.25% even for the
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Figure 3: Relative error of η extraction with formulas
(6) (Tsvankin and Thomsen, 1994), (16) (B1), and
(18) (B5) using the exact NMO velocity.

smallest η and with a maximum error of about 1.25%.
The error of Tsvankin and Thomsen’s formula has an
error close to zero at the smallest η, but increases
much faster with η than the two Bi estimates, reach-
ing a maximum of 3% at η = 0.5.

However, this kind of comparison suffers from an im-
portant lack of practicality. In practice, the exact value
of the NMO velocity is not known a priori. It is nec-
essary to estimate η using the value for vnmo as ob-
tained from a short-offset conventional velocity anal-
ysis. Thus, we repeated the above experiment using
the estimated apparent NMO velocities. We carried
out a conventional hyperbolic velocity analysis in an
offset range of 0.1 ≤ x ≤ 0.5. Figure 4 shows the es-
timated apparent NMO velocity as a function of η. We
observe a rather strong dependence of the estimated
NMO velocity on η.
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Figure 4: Apparent NMO velocity, estimated from a
short-offset conventional hyperbolic velocity analy-
sis, as a function of η.
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Figure 5: Estimated values of η when using the es-
timated vnmo from a short-offset hyperbolic velocity
analysis.
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Figure 6: Error of the estimated values of η when us-
ing the estimated vnmo from a short-offset hyperbolic
velocity analysis.

We then used these estimated values of vnmo in the
estimation of η. The incorrect estimation of vnmo

strongly deteriorates the quality of the η estimates.
Figure 6 shows the relative error of the η estimates
with formulas (6) (Tsvankin and Thomsen), (16) (B1),
and (18) (B5), using the estimated NMO velocities.
We see that the error of the three estimates is of com-
parable size, reaching about 30%. We conclude that
the error in the estimate of vnmo affects the η esti-
mates much more than the choice of the traveltime
approximation.

Thus, it turns out that the most important feature of
the new traveltime approximations is their ability to
allow for a correction of the apparent NMO velocity.
Figure 7 shows the predicted values of vap

nmo as a
function of η for the four values of Bi that predict an
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Figure 7: Prediction of apparent vnmo according
to equation (19) using four different choices of Bi.
Also shown is the observed trend of Figure 4 (black
curve).
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Figure 8: Estimates of vnmo after correction accord-
ing to equation (19) with B2 of equation (9).

η-dependent NMO velocity. Also shown is the ob-
served trend of Figure 4 (black curve). We observe
that the different approximations predict the appar-
ent NMO velocity with different quality. The best ap-
proximation for η below 0.1 is the one using B5. Up
to about 0.2, the B4 approximation remains closest.
The approximation that most closely resembles the
observed curve over the full range of tested values of
η is the one using B2.

Using the estimate of η, we can correct the estimate
for vnmo according to equation (21). This in turn gives
a new estimate for η. We continue this process it-
eratively until both values are consistent, i.e., until
the correction factor Ci differs from one by less than
ǫ = 10−4. In principle, and depending on the actual
value of η, this should be possible with all four pos-
sible choices of Bi for which the correction factor is

different from one. Because of the fact that B2 best
predicts the bias in the estimation of vnmo for the full
range of tested η (see Figure 4), we use only this ap-
proximation for the correction procedure.
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Figure 9: Final estimated values of η after iterative
correction of vnmo and η.
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Figure 10: Relative error of the final estimated values
of η after iterative correction of vnmo and η.

Figure 8 shows the final corrected values of vnmo af-
ter this iterative procedure. We see that the final es-
timates for vnmo are improved quite considerably. Of
course, because of the strongly nonlinear behavior
of the apparent NMO velocity, complete correction
is impossible. The deviation from the true value of
2.5 km/s is largest at an η of about 0.2. Correspond-
ingly, Figure 10 shows the relative error of the result-
ing final η estimate after the iterative procedure. As
we can see in Figure 10, the resulting error of the η
estimates has been reduced significantly in compar-
ison to Figure 6, except in the range of very small
values of η. The errors are below 20% for all η val-
ues above 0.03 and below 10% almost everywhere
except in the range around η = 0.2 where the appar-
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Figure 11: Section of Figure 1 after nonhyperbolic
NMO-correction with final estimated values for vnmo

and η.

ent NMO velocity has the most nonlinear behaviour.
Around η = 0.4, the error becomes close to zero.

Finally, Figure 11 depicts the synthetic data section
of Figure 1 after nonhyperbolic NMO-correction us-
ing the described iterative procedure for the extrac-
tion of vnmo and η. The extracted values for these
data where vnmo = 2.5162 km/s and η = 0.3285.

Conclusions

We extended the technique of Alkhalifah (1997) to
compute the anisotropic parameter η. The technique
consists of a conventional velocity analysis for short
offsets plus a calculation of η based on the nonhy-
perbolicity term, assuming that an accurate value for
the NMO velocity has been obtained. In our analysis,
we replaced the nonhyperbolicity term from the trav-
eltime approximation derived by Tsvankin and Thom-
sen (1994) by those of the more recent ones of Schle-
icher and Aleixo (2008).

We have seen that the η extraction is more precise
if the NMO velocity is known exactly. The general
problem of the technique, however, is its sensitivity
to errors in the estimate of the NMO velocity. The
traveltime approximations of Schleicher and Aleixo
(2008) allow to predict the bias in the NMO veloc-
ity estimate, thus providing a means of correcting
both the estimated NMO velocity and the resulting
η value. By means of a numerical example, we have
demonstrated the improvement in the estimation of
vnmo and η that can be achieved in this way.
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