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Abstract

The objective of this work is to demonstrate the ap-
plication of single-stack redatuming. The purpose of
this operation is to transform seismic data acquired
in a certain measurement level, in order to simulate
data as if acquired at another level. Recent the-
oretical advances allow to perform this transforma-
tion for zero-offset data in a single step. The true-
amplitude diffraction-stack-type redatuming operator
is based on the chaining of diffraction-stack migration
and isochron-stack demigration and was developed
for zero-offset data. It consists of performing a sin-
gle weighted stack along adequately chosen stacking
lines. In this work, we demonstrate the application of
this method to synthetic seismic data for media with
two or many flat layers and in models with lateral ve-
locity variations. In the first case the data are gener-
ated at and redatumed to flat surfaces, in the second
situation both surfaces of aquisition and redatuming
have different topographies, and in the third experi-
ment data from a laterally varying medium are reda-
tumed to a flat datum using only velocity information
in the top layer. Our examples demonstrate the qual-
ity of the redatumed data both kinematically and dy-
namically.

Introduction

Redatuming is used with the objective to transform
seismic data acquired at a certain measurement
level to simulate data as if acquired at another level
(Wapenaar et al., 1992). The standard way of realiz-
ing a redatuming is by downward continuation of seis-
mic time data (Berryhill, 1979, 1984, 1986). The main
goal when using redatuming is to improve the data
quality. In practice, redatuming is frequently used to
remove the interference of topography from the data,
simulating the aquisition at a planar datum. However,
the general ideas of redatuming are not restricted to
the datum being planar. The general redatuming for-
malism can include topography at both the original

aquisition surface and the new datum.

Over the years, many attempts have been made to
achieve the goal of determining the seismic data
at a new datum. Other contributions to the theory
of wave-equation-based redatuming methods include
the works of Yilmaz and Lucas (1986), Schuster and
Zhou (2006) made a summary about the state of art
in redatuming.

As geometrically discussed by Hubral et al. (1996)
and mathematically shown by Tygel et al. (1996), re-
datuming is a true-amplitude configuration transform
(particular case), developed from chaining of diffrac-
tion stack migration and isochron stack demigration
(Pila et al., 2007).

In practice, redatuming is often only employed kine-
matically, without regard to preserving the ampli-
tudes. However, when we want to use the dy-
namic information, for instance in a subsequent true-
amplitude migration (see, e.g., Schleicher et al.,
1993), amplitude preservation is of fundamental im-
portance in the complete processing sequence, in-
cluding redatuming. In this work, we demonstrate the
application of true-amplitude single-stack redatuming
to synthetic seismic data for media with two or many
flat layers and in models with lateral velocity varia-
tions.

Methodology

Redatuming is one of imaging operation that can be
described by a chaining of Kirchhoff-type migration
and demigration integrals. For this purpose, all that
has to be done is to interchange the order of integra-
tions and analytical evaluate the new inner integrals.
In this way, many one-step imaging operation of the
type of a diffraction stack can be developed (Schlei-
cher et al., 2007).

In this work, we study a 2.5D true-amplitude redatum-
ing, i.e., we study the amplitude behavior when reda-
tuming data. The attribute 2.5D (Bleistein, 1986) in-
dicates that in our experiments we consider 3D wave
propagation in a 2D earth model. The velocity is in-
variable in the y direction and the seismic line is po-
sitioned along the x-axis.

The experiment considers the zero-offset situation,
with sources and receiver in the same position and
equally spaced along the x-axis. We assume that
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all point sources and receivers are reproducible, i.e.,
they possess identical characteristics independently
of their actual position.

In the analysis below, the location of the source-
receiver positions along the original seismic line on
the acquisition surface Zo is described by their hor-
izontal coordinate ξ. In other words, the original
sources and receivers are located at the points G =
S = (ξ, 0,Zo(ξ)). Correspondingly, the simulated
source-receiver positions on the new datum Zr are
described by their horizontal coordinate η, i.e., they
are located at the points Gr = Sr = (η, 0,Zr(η)).

We know that for each point (η,τ ) in the re-
datumed section to be constructed, there is a
weighted diffraction-stack operation along problem-
specific stacking surfaces, the so-called inplanats t =
Tr(ξ; η, τ), that achieves the desired true-amplitude
transformation. Accordingly, the simulated data at a
new level can be expressed as a single stacking op-
erator with a weight function Wr(ξ; η, τ) acting upon
the input data, i.e.,

Ur(η, τ) =
1√
2π

∫

A

dξ Wr(ξ; η, τ)

D1/2[U(ξ, t)]|t=Tr(ξ;η,τ) , (1)

where U(ξ, t) stands for the input data and Ur(η, τ)
represents the redatumed output data. Moreover, A
denotes the aperture of the stack, that is, the region
over which data are stacked to contribute to the out-
put value at (η, τ). Finally, D1/2 is the half-derivative
operation which helps to correctly recover the pulse
shape of the source wavelet. It can be represented
as

D1/2[f(t)]| = F−1
[

|ω| 12 e−i π

2
sign(ω)F [f(t)]

]

, (2)

where F denotes the Fourier transform.

Stacking curve and weight function

The determination of the stacking curve is related
to the kinematic properties of the problem. The
stacking line connects all point in the input section
where a reflection event might have been recorded
that would appear in the redatumed section at an
output point (η, τ). On the other hand, the weight
function is related to the amplitude behaviour. The
condition for a true-amplitude weight function is that,
asymptotically, the simulated reflections must have
the same geometrical-spreading factor that the re-
flections would have if they were actually acquired on
the new datum. As shown by Pila et al. (2007), the
resulting true-amplitude weight function does not de-
pend on any reflector property. Thus, it is possible to
evaluate it for any point (η, τ) in the redatumed sec-
tion using only information about the velocity model.

The stacking curve Tr is determined using two steps:

1) Given a point (η, τ ) at the new datum, we must
construct the isochron ZIr(x; η, τ) in depth. This
isochron is defined by all points M = (x,ZIr(x; η, τ))
in depth for which the sum of traveltimes along the ray
segments SrM and MGr, which connect the depth
point M to the source-receiver pair (Sr, Gr), is equal
to the given time τ or, mathematically,

T (Sr,M) + T (M,Gr) = 2T (Sr,M) = τ . (3)

For the determination of the traveltimes T (Sr,M) and
T (Sr,M), a macrovelocity model must be available.

2) In the next stage, we consider the isochron
ZIr(x; η, τ) as a reflector in an experiment with the
input distribution of source-receiver pairs at the orig-
inal measurement surface z = Z≀(ξ). The resulting
traveltime curve can be written as;

t = Tr(ξ; η, τ) = TD(ξ;x∗; z∗) , (4)

where

TD(ξ;x∗; z∗) = T (S,M∗) + T (M∗, G) = 2T (S,M∗)
(5)

is the diffraction traveltime curve of the stationary
point M∗ = (x∗, z∗). For each source-receiver pair
at a position ξ, point M∗ represents the point on the
isochron z = ZIr(x; η, τ) where a reflection would
occur that would be registered at ξ with a traveltime
t. Point M∗, supposed to be unique, has the coor-
dinates (x∗, z∗ = ZIr(x

∗; η, τ)), where its horizontal
coordinate, x∗ = x∗(ξ; η, τ) is obtained from the sta-
tionarity condition (Fermat’s principle)

∂

∂x
[TD(ξ;x, z)] |x=x∗ = 0. (6)

Pila et al. (2007) demonstrated that the weight func-
tion Wr(ξ; η, τ) can be obtained from a fully analo-
gous analysis to the one presented for migration to
zero-offset (MZO) in Tygel et al. (1998). The reason
is that both operations belong to the general class of
configuration transforms. The arguments and mathe-
matical derivations applied to both situations are the
same. The final redatuming weight function for an ar-
bitrary medium, configuration and topography reads,

Wr(ξ; η, τ) =
voS

viS

√

σiS + σiG

σoS + σoG

LiSLiG

LoSLoG
(

cos θs

L2

iS

+
cos θG

L2

iG

)

1

cos φ

√

cos θoR

v3
R

exp {iπ[1 − sgn(Ki − Ko)]/4}
√

2|Ki − Ko|
, (7)

where viS , voS , vR are the velocities at the sources
on the input, output datums and at point M , re-
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spectively. Also, σiS , σiG are the so-called opti-
cal lengths of ray segments MSi and MGi, respec-
tively, i.e., the integral of squared velocity in travel-
time along the ray. Analogously, σoS , σoG, represent
these factors along segments MSo and MGo, re-
spectively. These factors represent the out-of-plane
geometrical-spreading factors.

The in-plane components of the geometrical spread-
ing are given by LiS and LiG, along segments MSi

and MGi, and LoS and LoG, along segmentes MSo

and MGo, respectively. Moreover, symbols θiS and
θiG represent the angles that the rays MSi and MGi

make with the surface normal at Si and Gi, respec-
tively, and φ is the surface dip angle at Si. In addi-
tion, θoR is the reflection angle at M in output con-
figuration Finally, Ki and Ko are the curvatures of
the input and output isochrons, respectively. For the
zero-offset configuration, Pila et al. (2007) simplified
expression (7) to

Wr(ξ; η, τ) =
voS

viS

√

2
σiS

σoS

cos θs

cos φ

1

v
3/2
R L2

oS

exp {iπk/2}√
Ki − Ko

.

(8)

Homogeneous medium without topography

For simple velocity models, the stacking curve (4)
and weight function (7) can be further simplified. For
example, for a homogeneous medium with a flat sur-
face and a flat datum, i.e., zi(x) = 0 and zr(x) = zr,
the geometry reduces to the one depicted in Figure 1.

x

z

zr

o o

 

ξη

o

i

C

S

SR

M* Ζ=Ζ (ξ;η,τ)
o

l

Figure 1: The unique reflection from an input source-
receiver pair to the isochron z = Zo(ξ; η, τ) crosses
the center of the semicircular isochron.

The stacking curve and the weight function for this
case were derived by Pila et al. (2007), resulting in

Tr(ξ; η, τ) =
2

υo
(Ro + ℓ) = τ + 2

ℓ

υo
(9)

and

Wr(ξ; η, τ) =

√

2

υo

(

Ro + ℓ

Ro

)

zr

ℓ3/2
. (10)

Homogeneous medium with topography

Pila et al. (2007) have also shown how the stacking
line and weight function must be modified if topogra-
phy is present at the acquisition surface zi = zi(ξ)
and at the datum zr = zr(η). The stacking curve (4)
is still valid, with ℓ denoting the distance between Si

and So, and in the weight function (8), the factor zr

needs to be replaced by

zr → [zr(η) − zi(ξ) − (ξ − η)z′i(ξ)] . (11)

Numerical experiments

The validity of the theory was confirmed by Pila et al.
(2007) by a numerical test in homogeneous models.
In this work, we extend the validity of the redatuming
operation to slightly more complicated models.

First model
In the first synthetic experiment, we apply constant-
velocity redatuming to a horizontally layered model
with five horizontal layers with acoustic wave veloci-
tys of 1500 m/s, 1800 m/s, 2500 m/s, 3300 m/s, and
4000 m/s. Figure 2 shows the geometry of the re-
flectors together with the ray family of the chosen
zero-offset configuration. The source-receiver pairs
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h 
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Figure 2: Model for the first numerical experiment: A
zero- offset experiment was simulated at z = 0 above
set of plain reflectors. Also shown is the datum level
(blue line) at z = 100 m.

are positioned at at z = 0 m at every 20 m between
ξ = −1000 m and ξ = 1000 m. Also show in Figure 2
is the new datum level at z = 100 m (blue line). We
generated the synthetic data using Kirchhoff model-
ing in the RMS velocity model (see Figure 3). These
data have then been used as input for redatuming
operation (1), with stacking line (9) and weight func-
tion (10) using the correct RMS velocity model. The
output configuration also consists of source-receiver
pairs at every 20 m between η = −1000 m and
η = 1000 m. The resulting redatumed data are de-
picted in Figure 4. For comparison, Figure 5 shows
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the ideal result of this redatuming operation, i.e., the
section obtained by direct Kirchhoff modeling at the
datum level. Comparing Figures 4 and 5, we recog-
nize that the kinematic transformation was very good.
The structure of the redatumed reflection data looks
identical to the one of the modeled data. Also, the
amplitudes of the five events are correctly recovered.
Some operator noise is visible after the events. For
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Figure 3: Modeled seismic zero-offset section.
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Figure 4: Section resulting from redatuming opera-
tion (1) to z = 100 m.

a more detailed appreciation of the quality of the re-
datumed data, Figure 6 shows a comparison of the
central traces of Figures 4 and 5. We see that the
five events are well recovered.

Second model
In the second synthetic test, the acquisition surface
and datum have different sinoidal topographies (see
Figure 7). The model consists of two homogeneous
and isotropic flat layers with acoustic wave velocitys
of 1500 m/s and 1800 m/s. Figure 7 shows the ge-
ometry of the reflector together with the ray family
of the chosen zero-offset configuration. The source-
receiver pairs are positioned at every 20 m between
ξ = −1000 m and ξ = 1000 m. Also show in Figure 7
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Figure 5: Section resulting from Kirchhoff modeling
at z = 100 m.
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Figure 6: Comparison of the central traces of Fig-
ures 4 and 5. Notice the good coincidence between
the redatumed (dashed line) and modeled (continu-
ous line) traces.

the new datum surface at z = zr(η) (blue line).

The synthetic Kirchhoff data for the model in Figure 7
are depicted in Figure 8. They have then been used
as input for single-stack redatuming. The output con-
figuration also consists of source-receiver pairs at ev-
ery 20 m between η = −1000 m and η = 1000 m. The
resulting data are depicted in Figure 9. For compari-
son, Figure 10 shows the ideal result of this redatum-
ing operation. The section in Figure 10 was obtained
by direct Kirchhoff modeling at the datum level. Com-
paring Figures 9 and 10, we recognize that the kine-
matic transformation was very good. The structure
of the redatumed reflection data looks identical to the
one of the modeled data. Some operator noise is vis-
ible after the event. For a more quantitative compar-
ison, Figure 11 compares the central trace of mod-
eled an redatumed sections in Figures 8 and 9. We
notice the almost perfect coincidence between the re-
datumed (dashed line) and modeled (continuous line)
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Figure 7: Model for the second numerical exper-
iment: A zero-offset experiment was simulated at
zi = zi(ξ) above a flat reflector. Also shown is the
datum level (dotted line) at zr = zr(η) m.
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Figure 8: Modeled seismic zero-offset section.

traces.

Model with lateral velocity variations
The third model consists of four smoothly curved in-
terfaces separating homogeneous layers with veloc-
ities 1508 m/s, 1581 m/s, 1690 m/s, 1826 m/s, and
2000 m/s (Figure 12). We modeled synthetic zero-
offset data by Gaussian beams at the planar surface
with source-receiver pairs at every 50 m between
ξ = 0 m and ξ = 4000 m (Figure 13). Then, we
redatumed these data to a depth of zr = 100 m (Fig-
ure 14) using the velocity of the topmost layer and
compared them to data modeled at the datum level
(Figure 15). The two sections look almost identical.

Conclusions

The redatuming operation can be thought of as being
composed of a true-amplitude diffraction-stack mi-
gration and true-amplitude isochron-stack demigra-
tion, as described in the unified approach to seismic
reflection imaging (Hubral et al., 1996; Tygel et al.,
1996). Based on this observation, Pila et al. (2007)
derived analytic expressions for the stacking line and
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Figure 9: Section resulting from redatuming to zr(η).
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Figure 10: Section resulting from Kirchhoff modeling
at zr(η).

weight function of a single-stack redatuming.

In this work, we have applied the redatuming operator
of Pila et al. (2007) to different synthetic data of mod-
els with two or more layers and in models with lateral
velocity variations. In these experiments, we have
seen that seismic data acquired at the measurement
surface were repositioned correctly to a new level,
preserving attributes as amplitude and phase. The
topography did not present a restriction to the appli-
cation of the method.

Further investigations are being carried to test the po-
tential of the redatuming operator for applications in
others models with lateral velocity variations.
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