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Abstract 

Classification without supervision of patterns into groups 
is formally called clustering. Depending on the application 
area these patterns are called data lists, observations or 
vectors. For exploration geophysicists, these patterns are 
usually associated with seismic attributes, seismic 
waveforms or seismic facies. 

The main objective of this paper is to show how one of 
the most popular clustering algorithms: Kohonen Self-
organizing Maps, should be applied to enhance seismic 
interpretation analysis associated with one and two-
dimensional color maps. 

Introduction 

One of the most important goals of seismic stratigraphy is 
to recognize and analyze seismic facies with regard to the 
geologic environment (Dumay and Fournier, 1988). 
According to Sheriff (2002), seismic facies analysis is 
done by examining seismic traces to identify the 
characteristics of a group of reflections involving 
amplitudes, abundance, continuity and configuration of 
reflections in order to predict the stratigraphy and 
depositional environment. 

The human brain excels at recognizing image patterns. 
Indeed, successful interpreters have developed during 
their careers a mental library of seismic facies based on 
their work history. They then compare new facies they 
encounter against their catalogue. Given the ever 
increasing size of 3D seismic data volumes the human 
brain can use some help. Considerable help is provided 
by seismic attributes, which represent complex 
multisample waveforms by a reduced number of more 
relevant measurements designed to delineate geolocic 
features of interest. The goal of clustering is to organize 
these seismic attributes in a way that further enhances 
otherwise hidden geologic features. 

Kohonen self organizing maps (SOM) is one of the most 
effective seismic clustering tools (Barnes and Laughlin, 
2002) because it can be associated with 1D and 2D 
colormaps to help seismic interpretation. Specifically, we 
applied the visualization technique to a real seismic data 
set from Campos Basin, offshore Brasil. 

Kohonen self organizing maps (SOM) 

The SOM (Kohonen, 2001) and K-means clustering are 
the two most commonly used tools for non-supervised 
seismic facies analysis with SOM providing ordered 
clusters that can be mapped to a gradational color bar 
(Coléou et al, 2003).  

SOM is closely related to vector quantization methods 
(Haykin, 1999). We begin by assuming that the input 
variables, i.e., the seismic attributes, can be represented 

by vectors in the space 
n
, x=[x1,x2,...,xn]. The objective 

of the algorithm is to organize the dataset of input seismic 
attributes, delineated by a geometric structure called the 
SOM. Each SOM unit, defined as a ―vector prototype‖, is 
connected to its neighbors, which in 2-D usually forms 
hexagonal or rectangular structural maps. 

We assume that the map has P elements, then, there will 
exist P n-dimensional prototype vectors mi, 
mi=[mi1,...,min], i=1, 2,..., P, where n is the number of 
input seismic attributes. After SOM training, the prototype 
vectors are a good representation of the input dataset of 
seismic attributes. 

The number of prototype vectors in the map determines 
its effectiveness and generalization capacity. During the 
training, the SOM forms an elastic net that adapts to the 
"cloud" formed by the input seismic attribute data. Data 
that are close to each other in the input space will also be 
close to each other in the output map. Since the SOM can 
be interpreted as a mapping of the input n-dimensional 
space onto a two-dimensional grid that preserves the 
original topological structure, and since seismic data 
measures the changes in geology, SOM preserves the 
topological relation of the underlying geology. 

Although the prototype vectors represent the input data 
very well they have the same dimension of the input data 
making vizualization difficult. However, topological 
relation among the prototype vectors can be used as a 
visualization tool showing the different data 
characteristics and structuring. One way to visualize 
cluster formation of the SOM prototype vectors is by 
computing the distance among the vectors thereby 
generating a U-matrix (Ultsch, 1993). Another way is by 
mapping continuous 1D, 2D or 3D colorbars to the SOM 
topology to represent the location of each prototype 
vector. 

1D SOM plotted against 1D colorbars 

Before we present the SOM methodologies, we introduce 
the real seismic problem addressed in this paper. The 
main goal was to delineate a channel in the basal 
stratigraphic unit of a turbidite reservoir from Campos 
Basin, offshore Brasil. Figure 1a shows the two way time 
structure map of the base of the reservoir. Figure 1b 
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shows a seismic inline with the proportional horizon slices 
generated between the base of the reservoir and an 
intermediate stratigraphic horizon, while Figure 1c shows 
an amplitude horizon slice at the base of the reservoir. 
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Figure 1: a) Time-structure map of the base of the 
reservoir; b) Proportional horizon slices between the base 
of the reservoir and an intermediate stratigraphic horizon; 
c) Amplitude horizon slice at the base of the reservoir.  

The main objective here is to classify the waveforms 
represented by the amplitude illustrated in Figure 1b by 
using the SOM 1D, SOM 2D and colors. 

First, a one dimensional SOM was trained; each 
prototype vector was assigned a color taken from the hue 
circle, i.e., considering saturation and value equal to one 
in the HSV color model (Guo et al., 2008). Since the SOM 
prototype vectors represent the complete input seismic 
data in the analysis window, classification is achieved by 
comparing each input trace with the SOM prototype 
vectors and plotted using the corresponding labeled color 
of the closest one. In general, classification can be done 
on any suite of attributes through the use of the 
Mahalanobis distance. On our Campos Basin shown in 
Figure 1, our attributes are simply seismic amplitudes on 
subsequent strata slices, such that the Mahalanobis 
distance is replaced by the simpler Pythagorean distance. 
When viewed vertically, each prototype takes on the 
appearance of a waveform shape, giving rise to what is 
called ―waveform shape classification‖ (e.g. Couleou et 
al., 2003). Figure 2a shows the result using 12 colors. 
The classes were labeled by using 12 colors uniformly 
distributed along the hue circle as defined by: 

ℎ𝑢𝑒 𝑖 =
2𝜋𝑖

𝑁
, 𝑖 = 0,… ,𝑁 − 1 (1) 

where N=12 is the number of colors. 

However, this representation does not take into account 
the distances between the prototype vectors and it does 
not show the clustering structure. Figure 2b shows the 
same 1D SOM colored by using the distances between 
neighboring prototype vectors, as defined by: 

 

ℎ𝑢𝑒 0 = 0,

ℎ𝑢𝑒 𝑖 = 2𝜋
  𝑚𝑗+1 − 𝑚𝑗 

𝑖
𝑗=1

  𝑚𝑗+1 −𝑚𝑗  
𝑁−1
𝑗=1

, 𝑖 = 1,… ,𝑁 − 1.
  (2) 

We can clearly see that classes near to each other have 
similar colors in Figure 2b, which facilitates the visual 
identification of the seismic facies. 

By increasing the number of prototype vectors, clusters 
and colors to 256 (Figure 3), we generate intermediate 
clusters which further delineate subtle features for the 
human interpreter. 

Specifically, we clearly see that some regions in Figure 1 
with high amplitudes, as the north-west and south-east, 
indicated by block arrows, are not associated with the 
channel waveform shape as shown in Figures 2 and 3. 

2D SOM plotted against 2D colormaps 

Although 1D SOM provides very good visualization 
results it is not recommended to identify the number of 
clusters in the data (Matos et al., 2007). 

Measuring the distances between SOM prototype vectors 
is one way to identify clusters in the data. Figure 4 shows 
the 2D SOM U-matrix obtained from the same seismic 
waveforms classified using the 1D SOM. We note that 
there is no obvious number of seismic facies. In this case, 
the choice of seismic trace amplitudes was inappropriate 
for seismic facies identification. Geologically, we expect a 
wide range of waveform variations in the area of interest 
because the seismic data were extracted from a complex 
sandstone turbidite system. The choice of the seismic 
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attributes for the classification of seismic patterns is 
fundamental to obtain coherent results. 
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Figure 2: 1D SOM with 12 classes; a) Coloring without 
taking into account the distances among the prototype 
vectors; b) Coloring taking into account the distances. 
The actual prototype vectors are plotted as the shapes in 
the colorbar. 

Although we cannot identify a discrete the number of 
seismic facies from the SOM when using the attributes 
chosen in this paper we can use gradational colors to 
visualize the more continuous relation among the 
waveforms. 

Figure 5 shows the classification results using the value 
color code gamut. In this case by a 2D color bar. 

In Figure 5, we did not take into account the distances 
among the SOM prototype vectors to create the 2D color 
map. Although the problem is not as direct as with 1D 
SOM, there are different ways to do it (Himberg, 1998). In 
this paper we project the SOM prototype vectors using 
Principal Component Analysis and Sammon mapping 
onto a two dimensional plane and then apply the HSV 
color to the 2D projections and color the SOM units. 
Figure 6a shows the 2D PCA projection of the SOM 

prototype vectors while Figure 6b shows the Sammon 
projection. Figure 7a shows the SOM classification results 
using PCA and Figure 7b shows the results using 
Sammon mapping. 
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Figure 3: 1D SOM with 256 classes coloring taking into 
account the distances among the prototype vectors.  

 

Figure 4: U-matrix, where colors correspond to the 
distances between prototype vectors (see Matos et al., 
2007). 

16x11

 

Figure 5: 2D SOM with 16x11 classes; Coloring without 
taking into account the distances between the prototype 
vectors. The colors were designated by using polar 
coordinates: values vary from 0 to 1, hues are function of 
the angle of the prototype vectors in the SOM topology 
plane and the saturation is equal to one. 
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Figure 6: SOM a) PCA projection; b) Sammon projection. 

Once again, we can see from Figure 7 that the channel is 
clearly delineated and the relationship among waveforms 
in the 2D SOM color bar helps to interpret the geology. 

SOM 16x11
PCA HSV

(a) 

SOM 16x11
SammonHSV

(b) 

Figure 7: 2D SOM with 16x11 classes. Coloring taking 
into account the distances between the prototype vectors 
using a) PCA projection and b) Sammon mapping 
projection. 

 

 

Conclusions 

Coding the SOM is a very good tool to visualize the 
relationship among different attributes. This technique is 
unsupervised and can be directly applied by the user. 
However, it should be emphasized that the choice of the 
seismic attributes for the classification of seismic patterns 
is fundamental to obtain coherent results. 
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