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Abstract 

The present work discusses an alternative to the usual 
finite difference (FDM) approach to 2-D wave equation 
modeling. This approach is based on the Finite Element 
Method (FEM) and introduces Deslauriers-Dubuc 
wavelets (Interpolets) as interpolating functions. An 
example in 1-D was formulated using Central Difference 
and Newmark schemes for time differentiation. 
Encouraging results were obtained even for large time 
steps. Results obtained in 2-D with FEM and FDM are 
compared for validation. 

Introduction 

Among the numerous techniques available for the 
solution of the partial differential equation that describes 
wave propagation, the finite difference approach (Kelly et 
al, 1976) is by far the most employed one, being used 
frequently as a standard for the validation of new 
methods. As a disadvantage, the FDM is known for 
requiring excessive refining of the model discretization. 
Irregular grids can be used (Opršal and Zahradník, 1999), 
increasing the complexity of the implementation and 
computational cost. 

The Finite Element Method (FEM) is a versatile tool for 
solving numerical problems. Its main advantage over 
other methods is its geometrical flexibility, which allows 
the use of complex and irregular meshes. Another known 
advantage of the FEM is how it naturally deals with 
boundary conditions. Its application to wave propagation 
problems is still limited, due to the large number of 
frequencies that are excited in the system (Bathe and 
Wilson, 1976). This work proposes adaptations in the 
FEM which can improve its performance in wave 
propagation problems.  

The conventional formulation of the FEM uses 
polynomials for interpolating the displacement within the 
elements (shape functions). This work proposes the use 
of wavelets as shape functions in order to obtain 
satisfactory results with less refined meshes and bigger 
time steps than the traditional FEM and FDM would 
require without affecting stability and convergence.  

Wavelets have several properties that are quite useful for 
representing solutions of partial differential equations 
(PDEs), such as orthogonality, compact support and 
exact representation of polynomials of a certain degree. 

These characteristics allow the efficient and stable 
calculation of functions with high gradients or singularities 
at different levels of resolution (Qian and Weiss, 1992).  
A complete basis of wavelets can be generated through 
dilation and translation of a mother scaling function. 
Although many applications use only the wavelet filter 
coefficients of the multiresolution analysis, there are some 
which explicitly require the values of the basis functions 
and their derivatives, such as the Wavelet Finite Element 
Method (WFEM). 

Compactly supported wavelets have a finite number of 
derivatives which can be highly oscillatory. This makes 
the numerical evaluation of integrals of their inner 
products difficult and unstable. Those integrals are called 
connection coefficients and they appear naturally in a 
Finite Element scheme. Due to some properties of 
wavelet functions, these coefficients can be obtained by 
solving an eigenvalue problem using filter coefficients. 

Working with dyadically refined grids, Deslauriers and 
Dubuc (1989) obtained a new family of wavelets with 
interpolating properties, later called Interpolets. Their filter 
coefficients are obtained from the autocorrelation of the 
Daubechies’ coefficients. In consequence, interpolets are 
symmetric, which is especially interesting in numerical 
analysis. The use of interpolets instead of Daubechies’ 
wavelets considerably improves the elements accuracy. 

The use of wavelets as interpolating functions in finite 
element formulation holds some promise due to their 
compact support, localization and multi-resolution 
properties. The approximation of the solution can be 
improved by increasing either the mesh resolution or the 
order of the wavelet used. 

The formulation of an interpolet-based finite element 
system is demonstrated for a one-dimensional wave 
propagation problem. Newmark’s algorithm for direct 
integration was tried as an alternative to the Central 
Difference Method in order to allow bigger time steps. A 
homogeneous example was formulated in order to 
validate the interpolet approach in 2-D problems.  

Interpolets 

Multi-resolution analysis using orthogonal, compactly 
supported wavelets has become increasingly popular in 
numerical simulation. Wavelets are localized in space, 
which allows the analysis of local variations of the 
problem at various levels of resolution.  

In the following expression, known as the two-scale 
relation, ak are the filter coefficients of the wavelet scale 
function. 
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The basic characteristics of interpolating wavelets require 
that the mother scaling function satisfies the following 
condition (Shi et al, 1999): 
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The Deslauriers-Dubuc (1989) interpolating function of 
order N is given by an autocorrelation of the Daubechies’ 
scaling filter coefficients (hm) of the same order (i.e. N/2 
vanishing moments). Its support is given by [1-N,N-1], it 
has even symmetry and is capable of representing 
polynomials of order up to N-1. 
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Interpolets satisfy the same requirements as other 
wavelets, specially the two-scale relation, which is 
fundamental for their use as interpolating functions in a 
FEM model. Figure 1 shows the interpolet IN6 
(autocorrelation of DB6). Its symmetry and interpolating 
properties are evident. There is only one integer abscissa 
which evaluates to a non-zero value.  
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Figure 1: Interpolet IN6 scaling function with its full support. 

Wave Propagation by FEM Dynamic Analysis 

The partial differential equation (PDE) which rules the 
wave propagation is: 
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where, u is the horizontal displacement, ρ is the density, t 
is the time and λ and µ are the Lamé parameters of the 
medium. Applying Hamilton’s Principle (Clough e 
Penzien, 1975) and using the FEM, the PDE can be 
rewritten at a specific time t as a system of linear 
equations, which in matrix form is: 
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In the given expression, M represents the mass matrix 
and K is the stiffness matrix of the model. These FEM 
system global matrices are assembled from the individual 
contributions of the local matrices of each element. 

As in the FDM, it becomes necessary to solve the system 
of equations at discrete time intervals. There are several 
effective direct integration methods, among which the 
most intuitive one is the Central Difference Method: 
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Substituting the expression of the acceleration obtained 
by the Central Difference Method and solving for the next 
time step t+∆tu: 

( ) uKMuuu 1 tttttt t −∆−∆+ ∆−−= 22  

The result of the matrix operation M-1K is easily obtained 
if M is diagonal. In this case, one can generate a unique 
local matrix at element level which contains both mass 
and stiffness information. It is known that the diagonal 
mass matrix can be used instead of the one generated 
from shape functions (known as consistent matrix) without 
introducing significant errors in the system (Burgos et al, 
2007). 

Nevertheless, consistent mass matrices were used in this 
work and a global matrix X was assembled using mass 
and stiffness contributions to the system. 

Stability of the Central Difference Method is conditioned 
to the choice of the time step, whose upper bound is 
obtained from a generalized eigenvalue problem. 
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The Newmark Method 

The constant-average-acceleration method (a special 
case of the Newmark Method) consists in an 
unconditionally stable scheme which can be summarized 
by the following expression: 
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This method requires the calculation of velocity and 
acceleration at all time steps and the inversion of the left 
hand side operator. Despite this, the Newmark Method is 
unconditionally stable. Therefore, significantly bigger time 
steps can be used. 

Application to 2-D Problems 

The PDE for the 2-D axial displacement wave equation is: 
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which can still be solved using 1-D finite elements by 
applying a scheme similar to what is commonly done in 
the FDM. 

( ) ( )22t t t t t t tt+∆ −∆= − − ∆ − Tu u u X u u Z  
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In the expression above, a second stiffness matrix is 
introduced as a differential operator in the second space 
dimension. The displacement is also represented as a 
matrix, instead of the usual vector representation of the 
FEM. 

Matrices X e ZT perform the differentiation along x and z 
directions respectively. These matrices contain both mass 
and stiffness information. Assuming spatial sampling of  
Nx x Nz points, X and Z are of size Nx x Nx and Nz x Nz, 
respectively. This represents an improvement over 
traditional FEM in terms of computational effort. 

Usually, the FEM requires a displacement vector of length 
NxNz and both global stiffness and mass matrices must 
have a size of NxNz x NxNz, operating over the whole 
system.  

The application of the Newmark Method in this 2-D 
scheme is not as simple as in 1-D, since the elements are 
still one-dimensional and there are right and left matrix 
multiplications involved. The following expression is an 
adaptation of the Newmark Method to the 2-D 
implementation proposed. 
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In this expression, t+∆tu appears in both sides of the 
equation, thus requiring the application of an iterative 
method for its calculation. This procedure not only 
increases the computational effort significantly but can 
also cause instability for large time steps. 

Element Formulation 

Assuming that displacement u is approximated by a 
series of interpolating scale functions, the following may 
be written: 
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Stiffness and mass matrices can be obtained by solving 
the wave propagation PDE using the FEM. Adimensional 
coordinates (ξ) within the interval [0,1] are used in 
wavelet space, which leads to the subsequent 
expressions: 

1
1,1

, ,0
( 2 ) ( ) ( ) ( 2 )i j i j i jk dλ µ ϕ ξ ϕ ξ ξ λ µ′ ′= + = + Λ∫  

1
0,0

, ,0
( ) ( )i j i j i jm dρ ϕ ξ ϕ ξ ξ ρ= =∫ Λ  

The so-called connection coefficients Λ appear in the 
expressions above. Wavelet dilation and translation 
properties allow the calculation of connection coefficients 
to be summarized by the solution of an eigenvalue 
problem based only on filter coefficients (Zhou & Zhang, 
1998). 
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Since the expression above leads to an infinite number of 
solutions, there is the need for a normalization rule that 
provides a unique eigenvector. This unique solution 
comes with the inclusion of the so-called moment 
equation, derived from the wavelet property of exact 
polynomial representation (Latto et al, 1992). 
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The adimensional expressions for the stiffness k  and 
mass m  matrices are in wavelet space and need to be 
transformed to physical space, using a transformation 
matrix T obtained by evaluating the wavelet basis at the 
element node coordinates. 
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It can be noticed that some terms related to the length of 
the element emerge from coordinate changes. 

Examples 

To validate the use of the Newmark Method for the 
Wavelet Finite Element, a 1-D example was formulated. It 
consists in applying a forced displacement at the free end 
of a pinned, unit length rod. The propagation was 
modeled by the FDM using 601 points and ∆t=0.1ms. For 
the FEM based on the IN6 interpolet, the discretization 
was performed with 91 points and ∆t=1ms. The rod’s 
middle point time response for both methods is shown in 
figure 2, which shows that the FEM result is acceptably 
close to that of the FDM, especially considering that FEM 
generates over 60 times less data per simulated second. 
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Figure 2: FEM results using IN6 Interpolet and Newmark Method 
(∆t=1ms) compared to FDM (∆t=0.1ms) for a one-dimensional 
wave propagation. 
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In order to validate the 2-D formulation, a simple example 
was proposed by analyzing the propagation in a  
2km x 2km model with constant velocity α=3000m/s. 

Finite Element model was sampled every 6.17m in both 
directions with a time step ∆t of 0.46ms, obtained by the 
generalized eigenvalue problem already described. Non-
integer values appear due to the 11 degrees-of-freedom 
present in the element implemented with IN6 (order 6 
Interpolet). A Newmark scheme was also implemented 
using the same spatial sampling and ∆t=0.6ms. The 
results were compared to the FDM using 5m spacing  
in both directions and ∆t=0.2ms. Finite Element mesh  
has 325 x 325 points and Finite Difference mesh has  
401 x 401. Results are shown in figure 3. 

Even with a less refined mesh and a more than twice 
bigger time step, the IN6 element was able to identify 
characteristic peaks of the wave propagation. The results 
of the proposed adaptation to the Newmark Method were 
very similar to the Central Difference ones using an even 
bigger time step. 

Conclusions 

This work presented the formulation and validation of an 
interpolet-based finite element. Newmark’s method for 
time discretization appears promising, although its 
application in 2-D problems with 1-D elements remains a 
challenge. The main improvement in the presented 
formulation was the possibility of using a bigger time step 
than the one required by the FDM. In future works, 
models with greater complexity will be analyzed and 
different families of wavelets will be explored. 

As done in the traditional FEM, all matrices involved can 
be stored and operated in a sparse form, since most of 
their components are null, thus saving computer 
resources. 
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Figure 3: Propagation snapshots at time t=0.3s for Example 2 using: (a) FEM and Central Difference Method, (b) FEM and Newmark 
Method, (c) FDM and Central Difference Method; (d) comparison of amplitudes along the indicated segment at depth 1000m. 
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