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Abstract 

This article presents numerical simulations obtained via a 
10-2 (10th order in space and 2nd order in time) finite 
difference scheme applied to acoustic waves. 
Nonreflecting boundary conditions – namely damping 
zone and perfect matched layer (PML) – are implemented 
and tested for different coefficients and varying absorbing 
layers. It has been found that the optimized PML and a 
modified version of Cerjan’s method can reduce 
significantly the artificial reflections at the boundaries 
when compared to the conventional attenuation 
coefficients. 

Introduction 

The appearance of fast processing computers and the 
continuous advances in numerical analysis have allowed 
new developments in geophysical wave modelling. For 
imaging the subsurface, many articles have been 
published dealing with numerical simulations of wave 
propagation using finite difference, finite element and 
boundary integral methods (Virieux 1986, Marfurt 1984, 
Schuster 1985, Durran 1999). 

A typical difficulty that arises when solving numerically 
such boundary value problems is how to express the 
radiation condition mathematically at a contour which is 
only at a finite distance from the energy source 
(Sommerfeld 1949). The boundary condition should allow 
travelling disturbances to pass through the contour 
without generating spurious reflections that propagate 
back toward the interior, which may eventually override 
the original emitted seismic signals. 

To avoid these side effects, researchers used to enlarge 
the computational domain, delaying the backward 
reflections, though increasing the numerical mesh and its 
computational demand. In the late 70’s, nonreflecting 
boundary condition techniques were introduced aiming to 
treat such problems. Clayton and Engquist (1977) and 
Reynolds (1978) proposed an absorbing boundary 
condition by applying a one-way wave equation in the 
boundary region, which proved to be efficient for events 
not at shallow angles on the contour. 

In the early 80’s, Cerjan et al. (1985) introduced the 
damping zone concept in which a gradual reduction of the 
wave amplitudes is imposed along an absorption layer, 

without any loss of effectiveness due to shallow angles of 
wave incidence. More recently, Berenger (1994) and 
Collino and Tsogka (2001) proposed the PML method for 
solving electromagnetic and elastic wave equations. A 
new matched medium is designed to absorb without 
reflection the incident waves at any frequency and at any 
incidence angle. 

This work aims to perform effectiveness tests for 
optimized nonreflecting boundary conditions in a finite 
difference time domain (FDTD) scheme applied to 
acoustic wave modelling. In the following sections, PML 
and Cerjan’s methods are presented and modified aiming 
to reduce wave reflection at the borders. Results are 
shown in terms of the time sum of squared energy 
difference between infinite and nonreflecting models for 
varying absorbing layers. 

Optimized PML Technique 

When the disturbances generated by a source reach the 
limits of the computational domain, reflected waves are 
spread throughout the medium. To avoid this problem, 
Berenger (1994) developed the PML technique, in which 
a new region that surrounds the FDTD domain is defined, 
where a set of non-physical equations are applied giving 
a high attenuation of the incident waves.  

For acoustics, the 2D linearized continuity and Euler 
equations take the following form at the PML absorbing 
layer, 

                            uBpBpt

⋅∇−=+ α ,                        (1) 

                             puBut ∇−=+
ρ

α 1 ,                         (2) 

where ρ, p and u  are, respectively, the medium density 
and the acoustics pressure and vector velocity, while α is 
the attenuation coefficient and B ( 2cρ= ) the medium 
bulk modulus. c is the medium wave speed. 

Differentiating in time and space equations (1) and (2) 
and subtracting the resulting expressions gives the PML 
acoustic equation, 
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The attenuation coefficient α varies accordingly to, 

                    ( ) ( )
( )

k

PMLPML nx
ix

rtB
i 
















=

1ln1
δ

α ,             (4) 

in which originally the maximum applied absorption rate 
rPML is equal to 1/10 and the exponent k=2. Therefore α 
oscillates from 0 (when x is at the border of the absorbing 



ABSORBING BOUNDARY METHODS FOR ACOUSTIC WAVE MODELLING 


Eleventh International Congress of the Brazilian Geophysical Society 

2 
layer, thus satisfying the acoustic wave equation) to 
ln(10)/(Bδt), where δt is the time step and nPML the number 
of PML grid elements. As it will be discussed later on, 
changing the values of rPML and k for a fixed nPML 
improves the effectiveness, reducing its side effects by 
increasing the maximum absorption rate and using 
smoother polynomials at the absorbing layer. 

Conventional Cerjan’s Technique 

Conventional Cerjan’s method introduces a damping zone 
around the domain consisting of Na points where the 
wave amplitude is absorbed by the relation, 

                 
2i))(Na(factore=Fac −∗− .                      (5) 

The coefficient factor is 0,015 for Na boundary layer 
points in the damping layer and i varies from 1 to Na. The 
factor remains constant for various numbers of points in 
the boundary layer. 

The wave amplitude gradually diminishes, but at the end 
of the process a small amount of energy is reflected. 
Though being small, the energy reflection cannot be 
accepted for more accurate analysis. To minimize the 
reflected energy, a common procedure is to increase the 
number of points in the damping layer. At first, the 
reflected energy diminishes, but from a certain number of 
points, it tends to remain constant. A procedure to 
minimize the energy reflected was then developed to try 
to diminish the error.  

Methodology 

In this study, the effectiveness of three different 
algorithms for wave absorption in the boundary layer was 
compared. For all algorithms, absorption layers with 
different thickness were tested. At time t=0, a Ricker type 
source is generated at the center of the model and 
propagated through a finite difference method.  

At first, the boundary layers were made large enough that 
no waves reach the boundaries of the numerical model 
during the simulation’s time and no absorption is applied, 
representing an infinite model. The wave field is recorded 
at receiver points located at a fixed distance from the 
source for all the propagation time, as shown in Figure 1. 

After this initial simulation, the test is repeated, but now 
with the application of the boundary layers with different 
thickness and the effectiveness of the absorption 
algorithms is studied. By taking the square of the 
amplitude difference between the infinite and the 
absorbing model, it is possible to evaluate the 
effectiveness of each absorption boundary, 

                ∑
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The model used a 2D constant velocity (3000 m/s) grid. 
As shown in Figure 1, the region without the absorption 
layer has 601x601 grid points. Around this region, a 
boundary layer was created with thickness varying from 
20 to 150 grid points. The wave absorption algorithms 
were applied in these boundary layers. The finite 
difference scheme uses a 2nd order in time and a 10th 
order in space operator. To avoid instability and 

divergence problems with the numerical method, the grid 
spacing has 5 meters and the time step 0,0002 s. The 
distance between source and receiver is of 294 grid 
points or 1470 m. 
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Figure 1: Wave propagation domain with absorbing 

boundary conditions. 

PML Results 

Figure 2 compares the effectiveness of wave absorption 
for the original (PML2-10: k=2, rPML=1/10) and optimized 
PML methods (PML5-10: k=5, rPML=1/10; PML2-1.1: k=2, 
rPML=9/10; PML5-1.1: k=5, rPML=9/10; PML7-10: k=7, 
rPML=1/10) with varying absorbing layers. Results show 
that, for a small number of PML grid elements (nPML=25, 
50), the application of larger maximum absorption rates 
(rPML=9/10) proves to be more efficient to absorb incident 
waves, reducing significantly wave reflections at the 
border. 
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Figure 2: Time sum of squared energy difference between 

infinite and nonreflecting boundary methods for varying 
absorbing layers. 
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On the other hand, for larger PML layers (nPML=75, 100, 
150), a conjugated use of maximum absorption rates 
(rPML=9/10) and higher order polynomials (k=5, 7) 
improves the effectiveness of the absorbing layer. In fact, 
figure 2 illustrates that the proposed optimized PML 
models are more effective than the original PML method. 

Optimized Cerjan’s Method 

In order to try to improve the conventional Cerjan’s 
method, the coefficient factors are calculated by 
minimizing the effectiveness equation (6) for each number 
of points on the boundary layer (20 to 100 points). 
Minimization was achieved by choosing starting values for 
Cerjan´s factor, followed by a standard numerical method 
to find the minimum. The factors computed are shown in 
figure 3. 

 
Figure 3: The coefficient factor of the optimized Cerjan’s 

method and the number of boundary layer points. 

Figure 4 shows the amount of energy reflection and the 
number of boundary points. It shows a comparison 
between the original Cerjan’s method and its optimization. 
It can be seen that the original Cerjan’s curve is constant 
after 25 grid points in the boundary layer, while on the 
optimized Cerjan’s curve the error decreases with the 
number of grid points in the boundary layer. The main 
goal is to develop a method that minimizes the error and 
does not increase the computational effort. 
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Figure 4 Comparison between conventional and 

optimized Cerjan’s method. 

Conclusions 

Two classical nonreflecting boundary methods – PML and 
Cerjan – were optimized aiming to reduce wave 
reflections at the borders of the 2D FDTD computational 
domain. Our main motivation was to reduce the number 
of grid points at the absorbing boundary layer for the least 
reflected waves inside the medium. It has been found that 
both optimizations increase the effectiveness of the 
absorbing layer, with better absorption efficiencies for the 
optimized Cerjan and PML methods. Results also show 
that side effects are very sensitive to the number of grid 
points used in the absorbing layer, with better results 
found for larger discretization points. 
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