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Abstract  

Minimization of a Sobolev norm during linearized 
inversion of given data enables to control the model 
parameters unresolved by the data being fitted.   

Even if a reasonably looking model can be obtained 
without minimizing the Sobolev norm, it may be too rough 
for some computational methods. We may construct 
models optimally smooth for given computational 
methods by minimizing the corresponding Sobolev norm 
during the inversion. 

Probably the smoothest models are required by the ray 
methods. The efficiency of ray tracing can be evaluated in 
terms of the “average Lyapunov exponent” for the model. 
The “average Lyapunov exponent” may be approximated 
by the square root of the corresponding Sobolev norm of 
the model, which allows models optimum for ray tracing to 
be constructed. 

Sobolev scalar products and Sobolev norms  

We define the Sobolev scalar product )),(( gf  (see, 

e.g., Tarantola 1987) of real-valued functions f  and g  

as a linear combination of the 2L  Lebesgue scalar 
products of the zero, first, second or higher derivatives of 
the functions. The linear combination should preserve the 
properties required of scalar products (symmetry and 
positiveness). 

The Sobolev norm of a velocity model may, in general, be 
composed of the zero, first, second or higher derivatives 
of the functions describing the model. The model is very 
often described by cubic, bicubic or tricubic splines. Since 
the third homogeneous partial derivatives of the splines 
are discontinuous, the Sobolev scalar product composed 
of the fourth and higher derivatives could be infinite, and 
thus should be avoided. Simultaneously, minimization of 
the (zero derivatives of the) model functions usually has 
no meaning. We thus usually consider only Sobolev 
norms composed of the first, second and third derivatives. 
Since studies of the third derivatives have not yet been 
finished, we will concentrate on the first and second 
derivatives.  

Including the Sobolev norm in the objective functio n 
for inversion of seismic data 

Minimization of the Sobolev norm during linearized 
inversion of given data enables to control the model 
parameters unresolved by the data being fitted. For 
example, if we are fitting discrete values of a material 
parameter with a smooth function, the properties of 
interpolation between the discrete values may be 
controlled by means of minimizing the square of the 
selected Sobolev norm of the function.  

Even if a reasonably looking model can be obtained 
without minimizing the Sobolev norm, it may be too rough 
for some computational methods. The errors of many 
computational methods may be approximated by a 
function dependent on the Sobolev norm of functions 
describing the model. We may thus construct models 
optimally smooth for given computational methods. 

In the case of ray methods, the situation is more 
complicated. The feasibility and efficiency of ray tracing 
imposes relatively strong requirements on the 
smoothness of the velocity models, but, unfortunately, we 
still have no quantitative criteria of applicability and 
accuracy of ray methods or their extensions. On the other 
hand, the numerical efficiency of ray tracing can be 
evaluated in terms of the “average Lyapunov exponent”, 
introduced by Klimeš (2002a) for 2-D models without 
structural interfaces. 

Fitting discrete values and regularizing an ill-
conditioned inversion 

Assume that we are fitting discrete values 
αu  at points 

αx  inside the model volume by minimizing objective 
function  

[ ] [ ]∑ +∆−=
−

)1(,))~,~(()(~ 222
uuSuuuy αααx  

where 
αu∆  is a given standard deviation of model 

)(~ xu  from values 
αu  at points αxx = . The properties 

of interpolation between discrete values by means of 
minimizing the squares of different Sobolev norms have 
been investigated by Klimeš (2000). He showed that the 
Sobolev norm composed of second derivatives of model 
functions is suitable for fitting discrete values. 

Assume that we are fitting a structural interface with a 
smooth function. In such a case the data for the function 
are available only in that part of the model, where the 
interface is located. The behaviour of the function in other 
parts of the model is not given by the data.  We might 
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control the function by adding new artificial points to the 
data for the interface, but this manual intervention would 
probably slightly distort the modelled interface. It is much 
more convenient to control the function by increasing the 
weighting factor S  of the Sobolev norm. A small 

increment of S  will not influence the function in the 
region with the data, but will regularize its behaviour in the 
remaining parts of the model, see, e.g., Bulant (2002). 

Constructing seismic models of optimal smoothness 
for a selected numerical method 

The Sobolev norm is usually included in the inversion of 
seismic dataif the numerical method to be applied to the 
model requires a smooth model. The Sobolev norm 
included in the objective function acts as a low--pass 
wavenumber filter (Klimeš 2000). 

 

We assume the objective function for the inversion of 
slowness or velocity )(xu  in the form of 

 [ ] )2(,))~,~((),(
~

dd 21
uuSCy += ∫∫

−
xxxx  

where 

 [ ][ ] )3(,)'()'(~)()(~)',(
~

xxxxxx uuuuC −−=  

is the covariance function describing the deviation of 

model )(~ xu  from geological structure )(xu  (Klimeš 

2002b), and S  is the weighting factor of the Sobolev 

norm ))~,~(( uu  of the functions describing the model. 

The first summand in )3(  is the mean squared difference 

between the model and the geological structure. It is then 

advantageous if 
2))~,~(( −uuS  approximates the r.m.s. 

difference of the results of the numerical method under 
consideration from the exact solution in the model, 
expressed in the units of )(xu . Objective function )3(  

then gains the clear physical meaning of the squared 
deviation between the model and the geological structure 
plus the squared deviation between the exact and the 
numerical results in the model. 

The selection of the Sobolev scalar products for particular 
numerical methods has been demonstrated by Klimeš 
(2000) on examples of centred finite differences of the 
second order, network shortest-path ray tracing, 2-D first-
order grid travel time tracing, and 2-D second-order grid 
travel time tracing. 

Constructing seismic models for ray tracing and 
Kirchhoff migrations 

In complex models, the behavior of rays becomes chaotic 
and the geometrical spreading, number of arrivals and 
density of caustic surfaces increase exponentially with 
travel time. The exponential increment may be 
quantitatively described in terms of the “average 
Lyapunov exponent” for the model. The “average 
Lyapunov exponent” may roughly be approximated by the 

square root of the Sobolev norm composed of the second 
partial derivatives of the functions describing the 
slowness or velocity field in the model (Klimeš 2000). This 
enables us to determine the quantitative criteria on 
models, so as to be suitable for ray tracing, in terms of 
Sobolev scalar products. We choose the maximum 
“average Lyapunov exponent” for the model, we estimate 
the maximum Sobolev norm of the model, and we 
estimate the value of weighting factor S . We then 
perform the inversion, compute the values of the “average 
Lyapunov exponent” and the Sobolev norm in the inverted 
model, re-estimate the value of S , and continue 
iteratively with the inversion until we obtain the model of 
the required smoothness. 

Numerical example - smoothing the regional model of  
Bohemian Massif for ray tracing 

Routines for application of the above described 
minimization of the Sobolev norm during the seismic 
inversion have been coded in Fortran 77. All the 
computations are carried out on a PC Pentium with 
64 Mbytes of memory. The software used for the 
computations is available at http://sw3d.cz. 

Series of seismic refraction experiments CELEBRATION 
2000, ALP 2002 and SUDETES 2003 (Guterch et al., 
2003a ,2003b; Brückl et al., 2003; Grad et al., 2003) were 
performed in Central Europe in years 2000 to 2003. Data 
from 8 profiles (CEL09, CEL10, Alp01, S01, S02, S03, 
S04 and S05) were processed by Růžek et.al. (2007). As 
a result, 2-D depth-velocity cross-sections of P-waves 
along the profiles were obtained. The depth range of the 
velocity sections is 35 – 70 km, the velocity varies in the 
range of 3.5 – 9.2 km/s, MOHO is detected in the depths 
from 30 to 45 km. 

The 2-D velocity sections calculated by Růžek et.al. 
(2007) are suitable for calculation of travel times along the 
selected profiles. For the purposes of locations of 
earthquake hypocenters, calculations of Green’s functions 
for moment-tensor inversions, etc., a single regional 
model is needed. As the amount of data is not sufficient 
for creation of a complex three-dimensional model, we 
decided to create a one-dimensional model. As the model 
should reflect the variations in the MOHO depth across 
the region, a smooth 1-D model was chosen. The model 
should be smooth enough to be suitable for calculations 
using the ray method. 

In this paper, we thus use the P-wave velocities 
calculated by Růžek et.al. (2007) as input data for 
linearized inversion, and we construct a smooth 1-D 
regional model of Bohemian Massif. Only the data 
relevant for the Bohemian Massif, i.e. the values 
corresponding to the latitude from 49 to 51 degree and 
longitude from 12 to 18 degree were used, see Figure 1. 

The goal of this work was to construct seismic velocity 
model yielding travel times consistent with observed 
regional data. In the Bohemian Massif, two types of 
regional seismic P-waves are usually observed. These 
are the Pg waves propagating through the Earth’s crust 
and arriving usually at the epicentral distances shorter 
than approximately 140 km, and the Pn waves 
propagating through the upper mantle and arriving at the 
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epicentral distances longer than 140 km. We thus wish to 
construct a model smooth enough to provide mostly a 
single arrival. 
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Figure 1 : The values of P-wave velocity used as the data 
for construction of the Bohemian Massif velocity model 
are plotted by crosses. The resulting smooth velocity 
model is plotted by the thick line. 
 

We choose the maximum average Lyapunov exponent 

λ of the model according to Eq. (11) of Bulant (2002), 

which reads max/2 T=λ , where maxT  is the maximum 

travel time in the model. If we consider the maximum ray 
path about 400 km and the average velocity in the model 

about 7,3 km/s, we arrive at estimation of s55max ≅T  

and 
1s036.0 −≅λ . We choose the weighting factor S  

of the Sobolev norm of the model similarly as in Eq. (20) 
of Bulant (2002), and we enter the value of 

skm300000=S  for the inversion. The resulting 

smooth velocity model is plotted by thick line in Figure 1. 
The average Lyapunov exponent calculated in the 

resulting model is 
1s043.0 −

, which is slightly higher 

value than estimated. Smoothness of the model is thus 
further tested by ray tracing. 

We performed several tests of ray tracing in the smooth 
model obtained by the inversion. Figure 2 displays the 
rays calculated from the source located in the depth of 5 
km, which may be considered as a typical depth for small 
earthquakes in Western Bohemia. The behavior of rays is 
quite reasonable, providing a single arrival for most of the 
epicentral distances. We can see the arrivals of a direct 
wave for the distances up to 180 km, and the appearance 
of the wave after the triplication starting at the distance of 
155 km. These two waves appear to be a reasonable 
approximation of the observed Pg and Pn waves.  
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Figure 2:  The x-z cross-section through the resulting 
smooth model displays the rays calculated from the 
source at the depth of 5 km. The rays arriving at the 
surface with epicentral distances lower than 180 km may 
be understood as an approximation of the observed Pg 
waves, the rays with epicentral distances higher than 155 
km approximate the Pn wave. 

 

Conclusions 

The minimization of the Sobolev norm of the model during 
linearized inversion enables us to control the model 
parameters unresolved by the data being fitted, while the 
parameters determined by the data remain almost 
unchanged. It enables us to minimize not only the 
difference between the data and the model, but, for many 
computational methods, also the difference between the 
exact solution and the results obtained by the considered 
approximate numerical method to be used for calculating 
wavefields in the model. 

The smoothness of the velocity field of the models 
constructed for the ray methods may be quantitatively 
described in terms of the “average Lyapunov exponent” 
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for the model. The “average Lyapunov exponent” may be 
approximated by the square root of the corresponding 
Sobolev norm of the model. This enables us to determine 
the quantitative criteria on the models, so as to be 
suitable for ray tracing, in terms of Sobolev scalar 
products. The criteria then allow us to construct the 
optimum models of geological structures for ray tracing, 
either by smoothing given rough models, or by inversion 
of seismic data. 

The numerical example demonstrates the application of 
Sobolev norm in smoothing real velocity data by 
linearised inversion. The resulting smooth regional 
velocity model is suitable for ray tracing, and it mimics the 
basic features of the structure, i.e. the Pg and Pn waves 
observed in the data. In the future, the model will enable 
more precise locations of earthquake hypocenters, 
calculations of Green’s functions for moment-tensor 
inversions, and many other useful applications. 
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