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energy in the counter gas, producing ionization along the 
oppositely directed particle tracks.    
In the MCNP code the detection of neutrons in a 3He gas 
has been making by means of energy functions that 
convert neutron fluxes to reaction rates (n,p) 
(Briesmeister, 1997). It allows obtaining count values 
comparable with experimental data. However, it does not 
allow producing light ions from neutron capture reactions 
like triton and proton, and nor study the behavior of these 
particles as a function of the detector design. 
With the development of the version MCNPX 2.6 
(Pelowitz, 2007), the simulation of light ions (protons, 
triton, deuterons and alphas) from neutron capture 
reactions was made possible. With this in mind, the 
purpose of this work is to use the new capabilities 
included in the MCNPX 2.6 code to simulate the 3He(n,p) 
reaction for nuclear well logging applications. 

 
Neutron Detection 

 
In a typical event, a neutron is captured by a 3He atom, 
which reacts to produce a proton and triton as shown in 
Figure 1. The kinetic energies of proton (573 keV) and 
triton (191 keV) sum to the Q-value of 764 keV for the 
reaction (Knoll, 2000). The range of these energetic 
daughter particles is a few millimeters at detector gas 
pressures of a few atmospheres. The energetic daughter 
particles ionize atoms creating electron-ion pairs as they 
slow down. The electrons are attracted to the anode with 
a drift time of a few microseconds across a typical shell 
diameter. Motion of the charge carriers produces the 
measured signal pulse that is sensed by the external 
electrodes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: A neutron capture event produces an energetic 
triton and proton that ionize the stopping gas, producing 
free electron-ion-pairs. 
 
 
Charged particles transfer their kinetic energy to the 
electrons (and a lesser extent the nuclei) along their path. 
When the proton has higher energies, local charge 
screening prevents it from transferring as much energy 
per unit path length as when it is at lower energies, thus 
spending more time along each interval of its track. The 
combination of the dependence of the generated 
electrical pulse on the initial position of the generated free 
carriers, the relatively large spatial extent of the initial 
cluster of free electrons, and the tendency of the proton to 

generate more of its free electrons near the end of its 
range combines to prevent the development of a 
distinctive pulse height indicative of neutron interaction. 
This relatively flat pulse height is what has been observed 
experimentally.  
 
 
Computer Model 

 
The calculations were made using the Monte Carlo code 
MCNPX version 2.6 (Pelowitz, 2007). In order to produce 
light ions from neutron capture reactions in 3He, the 
optional neutron capture ion algorithm (NCIA) was used 
(Hendricks et al., 2007).  Besides, the light ion recoil was 
also considered. It occurs for neutrons and protons 
colliding with triton and 3He. 
Some capabilities that make MCNPX 2.6 useful to well 
logging applications are listed as follows: 
 
-Complete representation of thermal neutron scattering by 
molecules and crystalline solids; 
-Cross sections for elastic and inelastic scattering; 
-Coupled energy/angle distribution for inelastic scattering; 
-Angular distributions for elastic scattering; 
-Charged ions from neutron capture; 
-Neutron models produce light nuclei (A<4). 
 
System Modeling 
 
The results were obtained using a model of a typical 
nuclear well logging tool, used previously for Serov et al. 
(1998). It is shown in Figure 2.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Well logging porosity tool model (not to scale) 
(Serov et al., 1998). 
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the F8 tally is dependent on results f
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2007). The energy output from one r
subdivide the pulse height tally (F8). 
anticoincidence is considered. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
Figure 3: modeled system in the MCNP
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Figure 4: Energy spectrum
simulation. 

 
Results 
 
Figure 5 shows the 3He p
for the near and far detecto
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5: 3He pulse height
and (b) far detection. 
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For a large tube, nearly all the reactions occur sufficiently 
far from the walls of the detector to deposit the full energy 
of the products within the gas. In that event, all energy of 
the reaction is deposited in the detector. Once the size of 
the tube is no longer large compared with the range of the 
proton and triton produced in the reaction, some events 
no longer deposit the full reaction energy in the gas.  If 
either particle strikes the chamber wall, a smaller pulse is 
produced. The cumulative effect of this type of process is 
known as the wall effect in gas detector. The  two steps or 
discontinuities in the continuum shown in the Figure 5 is 
due to this effect. 
It can be explained through the following argument. 
Because the incoming neutron carries no appreciable 
momentum, the two reaction products must be oppositely 
directed. If the proton strikes the wall, the triton is 
therefore directed away from the wall and is very likely to 
deposit its full energy within the gas. Conversely, if the 
triton strikes a wall, the entire energy of the proton from 
that same reaction is usually fully absorbed. Thus, we 
expect to see wall losses for only one reaction product at 
a time. There are two possibilities: (1) the proton hits a 
wall after depositing some fraction of its energy in the fill 
gas, whereas the triton is fully absorbed in the gas, or (2) 
the triton hits a wall after depositing part of its energy and 
the proton is fully absorbed. Under case (1) above, the 
reaction could occur at a distance from the wall that might 
be anywhere between zero and full proton range. The 
amount of energy deposited in the gas can 
correspondingly vary from (E3

H  +  0) to  (E3
H  +  Ep). 

Because all locations of the reaction are more or less 
equally probable, the distribution of deposited energy will 
be approximately uniform between these two extremes. In 
the case (2), parallel arguments can be made to show 
that the energy deposited in the gas will vary from           
(Ep  +  0) to   (Ep  +  E3

H). The combined energy deposition 
distribution of all events in which either reaction product 
strikes a wall will simply be the sum of the two cases. 
In addition to the wall effect events, the sketch above also 
shows the location of the full energy peak that results 
from all those reactions from which both products are fully 
absorbed in the gas. The wall effect continuum extends 
from E3

H (0.191 MeV) up to the full energy peak at        
E3

H  +  Ep (0.764 MeV). 
Besides, Figure 5 also shows that the number of the 
pulses counted on the near detector is larger. It occurs in 
particular owing to detection efficiency depends not only 
on detector properties but also on the details of the 
counting geometry like the distance from the source to the 
detector. 
 
 
 
 
 
 
 
 
 
 
 
 
 

In Table 1, the count values  obtained in this work using 
the new capabilities included in the MCNPX 2.6 are 
compared with the count values obtained by Serov et al. 
(1998) using the MCNP 4A. The comparison of the results 
presented in both works shows that the count values 
obtained in this study are in good agreement with the 
literature. 

 

Conclusions 
 
The new capabilities included in the MCNPX 2.6 code to 
simulate the 3He(n,p) reaction for nuclear well logging 
applications was implemented in this work. The results 
obtained confirm that it is useful to predict the count 
values, as it allows obtaining results comparable with the 
literature. Besides, the new capabilities of the MCNPX 2.6 
allow producing the triton and proton reaction products 
and the expected pulse height spectrum from a 3He 
detector in which the wall effect is significant. It makes 
possible studies of the behavior of these reaction 
products as a function of the 3He detector design.     
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Table 1. Comparison of count values for the oil well porosity tool model. 
 

Detector Position 

Serov et al.(1998) - MCNP 4A This work 
MCNPX 2.6 

Analog 
continuous 

Weight 
Windows 

continuous

Analog 
multigroup 

Midway 
analog 

multigroup 

Analog 
Continous 

Near Detector 
Flux x 104 
per source 

particle 
5.1588 5.0604 4.7046 4.6481 5.2062 

Far Detector 
Flux x 106 
per source 

particle 
6.2822 6.3027 4.2633 4.3289 7.3447 


