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Abstract

The inverted seismic data supports the geological
model building. The acoustic impedance volume
correlates with pretrophysical proprieties. Using data
and inverse data relationships, the hard data from
wells can be extended for the entire seismic survey
area. The Recurrent Neural Network (RNN) was
successful at the 1D reflectivity inversion process.
The Recurrent Fuzzy System achieved better results,
inverting the less frequent synthetic models. The
RNN and RFS was applied to synthetic data seismic
inversion, obtaining an equivalent result of the band
limited impedance inversion.

Introduction

Inversion is not a simple task, even for synthetic
data considering a normal incident wave; isotropic,
horizontal and parallels layers; and the convolutional
model for seismic trace. When dealing with real data,
additional difficulties occur concerning, for instance, lost
information related to high and low frequencies content,
noise presence and wavelet shape modification due to
dispersion. Artifical Neural Network is considered as an
interpretation assistant, instead of an isolated tool (Latimer
et al. (2000) van der Baan and Jutten (2000), Poulton
(2002) Santos (2008)).

System identification by ANN requires a data set to adjust
the model. In the seismic case, data set comes from field
acquisition and processing. Therefore, is necessary to
create models to subsidy the inversion. A large amount
of seismic data, covering a representative number of
geophysical profiles is required in order to establish a
robust seismic identification net.

In the convolutional model, considered here, the Earth is
represented by horizontal layers with constant properties,
in the form of a pseudo 1D model. The wavelet is a
continuous function, while the reflectivity (computed from
the impedance log) is a series of short duration impulses,
located at each reflector.

Recurrent Neural Networks Models

ANN is a computational model composed of simple
processing elements, called nodes, connected through
weights. These weights are adjusted during training to

increase the net performance in the problem solution. The
node is a mathematical model of a linear combination of N
weights w1 ��������� wN and N inputs x1 ��������� xN and the result is
passed through a non-linear function Φ.

The neuron is a operator of kind
� N � 1 � � , where the

input vector is given by �	��
 1 � x1 ��������� xN � T , and ��
w0 � w1 ��������� wN � T is the neuron weight vector, given by the
equation:

y � Φ

�
N

∑
i � 1

wixi � wo � � Φ ������� � (1)

RNN architecture is the key to represent dynamic
properties of a discrete temporal input signal and its ability
to preview a future value Mandic and Chambers (2001). A
discrete signal is usually obtained by sampling analogous
measures.

Neural networks can use two kinds of topologies: feed-
forward and recurrent. At feed-forward topology network
is ordered into layers with no feedback paths; the lowest
layer is the input layer, the highest is the output layer.
Given layer generate outputs only to higher layers and
its inputs come from lower layers Mandic and Chambers
(2001). In recurrent topologies, the units in a layer can
be connected to the units in a preceding layer. The feed-
forward topologies can approximate non-linear stationary
systems, while recurrent topologies can fit dynamic non-
linear systems.

A signal y � k � is predicted based on past values p, i.e., y � k �
1 � � y � k � 2 � ��������� y � k � p � , weighted by the ai, i � 1 � 2 ��������� p
coefficients to form a prediction ŷ � k � . The prediction error,
e � k � , to ANN is:

e � k ��� y � k ��� ŷ � k ��� y � k ��� p

∑
i � 1

aiy � k � i � � (2)

The feedback inside the RNN can be obtained from a local
or global form. The local feedback is obtained by the
introduction of a feedback inside a hidden layer and global
feedback is produced by the connection of output with the
net input (see figura 1).

Recurrent fuzzy systems

Consider the general state space representation of discrete
time, non-linear, multi input multi output dynamic systems:��� t � 1 ��� �!�"��� t � �$# � t ��� (3)% � t ���'&(�"��� t � �$# � t ��� � (4)

where �)� t � is the state variable vector, # � t � is the input
variable vector, � and & are respectively the transition and
output funcitons and % � t � is the system output.
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Figure 1: RNN structure with local and global feedback
(extracted of Mandic and Chambers (2001)). Although the
delays are not explicit in the feedback connections, they are
presents in the neurons.

That state space representation can represent several
types of dynamic systems according to input ranges and
state variables and the choice of transition and output
functions. Discrete valued input, state variables and
discrete functions, � and & are used to model discrete
systems, represented by discrete finite-state automata.

At TSK-type RFS model, the variable in the conclusion
of the rules is a state variable, which also appears in the
premise, providing recursion. The first order, single input,
TSK-type RFS rules are written as:

If x � t � is Ai and u � t � is B j then x � t � 1 ��� θr � (5)

where x � t � is the state variable and u � t � is input variable
(Gama et al. (2008)) . The fuzzy sets Ai and B j are defined,
respectively, on the state and input variables domain and
θr is the output parameter for each one of r � 1 ����� M rules.
The RFS model output is the state variable:��� t � 1 �*�+,� t � θ (6)

where θ is the output parameters vector, and  is the
vector whose components are the activation values of
the rules premises. The product operator is used as t-
norm such that the vector ,� t � can be computed by the
Kronecker tensor product as:,� t ��� µ -.� x � t ���0/ µ 12� u � t ��� (7)

Post-stack seismic inversion

The seismic trace inversion process by ANN is made in two
stages: (i) reflectivity realization for ANN from seismic data
and (ii) integration and trace exponentiation.

The inversion algorithm employed here considers 1-
D stacked data. The earth is considered isotropic;
thus the model parameters to be used/determined are
compressional velocity (VP), density (ρi), and thickness (hi)
of all layers.

The data set consists of a series of convolutionals
horizontal layers models. Input data is the seismic trace
and the output data (target) is the reflectivity. The RNN
approach considers the input and output as non-stationary.
The net topology involves the number of neurons
determination in the hidden layer, its activation function, the
delays and the places of feedback (recurrence).

Synthetic model inversion

To test seismic inversion accuracy using ANN, several
synthetic models composed of horizontal layers were
created 8 horizontal parallel 200m thick layers. The first
layer velocity is 1500m 3 s. After the velocity vl is calculated
for the layer l; the velocity for the layer l � 1 is generated in
a pseudo-random way as indicated below:

vl � 1 �4� vl � 190m 3 s 5 380m 3 s � (8)

The wavelet for this experiment is a Ricker one with
dominant frequency of 8Hz and 300ms. The density
is constant, 1 � 00g 3 cm3. Figure 2 illustrates diagrams
of acoustic impedance and reflectivity obtained from the
velocity profile computed from equation 8 and the resulting
seismic trace.
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Figure 2: Acoustic impedance, reflectivity, Ricker wavelet
of 8Hz and seismic trace for a synthetic model calculated
using equation 8.

Recurrent Neural Net topology

The net was trained with the number of neurons increasing
from 5 to 40. Figure 3 shows that for a net with nine
neurons the mean square error (MSE) of validation is
around 0 � 0065. A net with 15 neurons in the hidden layer
revealed unstable, with higher errors.

The net topology that yielded optimum performance
(convergence time associated with result quality), was that
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of a RNN with one layer of nine neurons, with global
recurrence.
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Figure 3: MSE versus number of neurons in the hidden
layer. The bar size indicates the error amplitude. The
continuous line represents the MSE of the net training
with 98 examples. A net with nine neurons presents a
reasonable performance.

The net validation was made with a data set not included in
training set, resulting in fast training and noise-free outputs.

RFS Topology

The best joined structure for RFS inversion uses 4 fuzzy
sets for the state variables (reflectivity) and 5 for the input
(seismic trace). Those four sets for the reflectivity variable
are a consequence of the way the model was created, with
the velocity of layer n � 1, vn � 1 � vn � 190 5 380. The groups
correspond to the velocity intervals 
6� 190 � 0 � ; 
 0 � 190 � ;
 190 � 380 � and 
 380 � 530 � (in fuzzy language: negative, low
positive, positive medium and high positive).

Concerning the seismic signal, one set with five different
velocities elements, 7 n � 2n � n � 1n � n � n � 1n � n � 2n 8 , is
necessary to originate four interfaces; where n � 190m 3 s.
Comparing RNN and RFS

Figures 4 and 5 show RNN and RFS performances, for
two cases in each method: minor and greater RMSE. The
cases selected corresponds to best and worst case of each
net in order to detect ANN application limitations.

Figure 4 shows the models that correspond to highest
and lowest RMSE of inversion using RFS. In both cases
(highest and lowest RMSE), it is plotted together: (i)
syhthetic impedance model, its inverted profile using RFS
and its inverted profile employing RNN; (ii) synthetic
seismic trace and seismic trace calculated by the forward
model using the acoustic impedance profile obtained
employing RNN; (iii) synthetic seismic trace and seismic
trace calculated by the forward model using the acoustic
impedance profile obtained employing RFS. Figure 5 plots

follow the same pattern as those presented in figure 4, the
difference being that it display results that corresponds to
highest and lowest RMSE of inversion using RNN.

Seismic traces shown in figure 5 indicates that the results
corresponding to highest RNN, RMSE, indicate this net to
diverge. It is important to notice that the divergence results
ocurred to a model quite distant from the most frequents
ones.
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(a) Velocity profile correspondent to lowest RMSE using RFS.
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(b) Velocity profile correspondent to highest RMSE using RFS.

Figure 4: Velocity that correspond to highest and lowest
RMSE to inversion using RFS. In both case, is plotted
together: (i) superposition of the model, the inverted
profile using RFS and the inverted profile using RNN; (ii)
superposition of the synthetic trace with the model seismic
trace calculated by forward model using the acoustic
impedance profile obtained using RNN; (iii) superposition
of the synthetic trace with the model seismic trace
calculated by forward model using the acoustic impedance
profile obtained using RFS.

Both nets have presented similar performances in the
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(a) Velocity profile correspondent to lowest RMSE using RNN.
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(b) Velocity profile correspondent to highest RMSE using RNN.

Figure 5: Velocity that correspond to highest and lowest
RMSE to inversion using RNN. In both case, is plotted
together: (i) superposition of the model, the inverted
profile using RFS and the inverted profile using RNN; (ii)
superposition of the synthetic trace with the model seismic
trace calculated by forward model using the acoustic
impedance profile obtained using RNN; (iii) superposition
of the synthetic trace with the model seismic trace
calculated by forward model using the acoustic impedance
profile obtained using RFS.

majority of cases, but the RFS revealed more efficiency for
two reasons: in the worst case (figure 4(b)), the inverted
curve keeps the real log trend and the seismic trace
calculated by the forward modeling using inverted RFS
data as input are very similar to the seismic input whereas
none of these two favorable features can be observe in the
worst RNN case (see figure 5(b)).

Moreover, in figure 5(b), where the velocities do not
increase with the depth, the RFS revealed efficiency
in the data recovery, indicating a higher net versatility.

Considering the characteristic of synthetic models sets, this
log type is less frequent, therefore predominates logs with
increasing velocities.

Another RFS advantage is the possibility to interpret the
data, relating it with geologic criteria.

Despite the better inverted data, given by RFS, RNN
presents lower MSE distribuition; this better RNN
performance occurs in the majority of cases as shown in
the figure 6.
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Figure 6: RMSE distribution of the inversions for the RNN
and the RFS, excluded the higher values than 2500m 3 s 9
g 3 cm3 (6 values).

Conclusions

Considering the simple reflectivity integration, the inverted
and real data have qualitatively similar acoustic impedance
data (figures 4 and 5), except in the cases where
does not predominate the velocity increase trend (figure
5(b));Figures 4 and 5 shows multiplicity of the solution
problem, although the inverted data differ from the
synthetic input data, the seismic data calculated by the
forward modeling present good correlation (with exception
for the case shown in the figure 5(b));

The Recurrent Neural Net revealed useful in the 1-D model
reflectivity inversion. Using 300 examples and one hidden
layer of nine neurons, the net was capable to invert the
data. The RNN performance is lower in velocity-depth
decrease trend, because the most over of training data set
has the opposite behavior.

Recurrent Fuzzy System had a better performance than
simple RNN. It approximated in a more efficient way the
less frequent training data set. The method showed
promising; the results obtained are compatible with those
of other methods of current application in the industry

References

Gama, C. A., A. G. Evsukoff, P. Weber, and N. F. F.
Ebecken, 2008, Parameter identification of recurrent
fuzzy systems with fuzzy finite-state automata
representation: IEEE Transactions on fuzzy systems,
16, 213–227.

Latimer, R. B., R. Davidson, and P. van Riel, 2000, An

Eleventh International Congress of The Brazilian Geophysical Society



SANTOS CGP, EVSUKOFF AG & MANSUR WJ 5

interpreter’s guide to understanding and working with
seismic-derived acoustic impedance data: The Leading
Edge, 19, 242–256.

Mandic, D. P. and J. A. Chambers, 2001, Recurrent neural
networks for prediciton. Wiley series in adaptative and
learning systems for signal processing, communication,
and control: John Wiley.

Poulton, M. M., 2002, Neural networks as an intelligence
amplification tool: A review of applications: Geophysics,
67, 979–993.

Santos, C. G. P., 2008, Inversão acústica de dados
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