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Abstract 

In the last decade in the petroleum industry, geostatistical 
filtering solutions based on Factorial Kriging technique 
have been developed and applied to seismic data sets in 
various operational contexts. These solutions commonly 
assume stationarity for the underlying random function, 
which limits their efficiency as soon as the target area 
becomes large or involves complex structural patterns. 

In this paper we introduce M-Factorial Kriging models, 
which allow to account for non-stationary effects that are 
encountered within seismic data sets. In the framework of 
noise attenuation issues, sources of non-stationarity 
relate for example to signal absorption, geological 
structuration, spatial variations of signal-to-noise ratio or 
varying geometrical features of noise. 

M-Factorial Kriging models ensure a better efficiency of 
the resulting geostatistical filtering process. As a 
consequence, signal and noise are better separated. This 
is illustrated by applying M-Factorial Kriging to a noisy 
PSTM amplitude section. 
 

Introduction 
 

Today, the variogram is at source of many geostatistical 
models. It enables to build estimation (kriging) and 
simulation operators by catching the spatial correlation 
inherent to a data set. 
 
Factorial Kriging is a variogram-based filtering technique 
developed by Georges Matheron in 1982 [1]. It relies on a 
simple additive model where the spatial variable under 
study is modeled by a random function, Z(x), which is 
parted in terms of independent factors: 
 
Z (x) = Z1 (x) + Z2(x) + … 
 
Noise attenuation issues can be easily handled into the 
framework of this model, as far as the noise part of a data 
set can be considered independent of a complementary 
signal part: 
 
Z (x) = ZNOISE (x) + ZSIGNAL (x) 
 

In such a way, Factorial Kriging, by estimating ZSIGNAL(x), 
allows to filter out the noisy component of a data set. 
 
During recent years, geostatistical filtering solutions 
based on Factorial Kriging technique have been 
developed and applied to seismic data in various contexts 
such as data quality control [2], dense seismic velocity 
regularization [3], acquisition artifacts removal from 
refraction data [4], 4D repeatability enhancement [5]. 
Although the technique proves to be efficient for 
attenuating noise globally, it appears limited when faced 
with non-stationary phenomena affecting the data. 
 
This paper demonstrates how Moving-GeoStatistics (M-
GS) technology, combined with Factorial Kriging 
technique, provides an optimal way for attenuating noise 
polluting spatial or spatio-temporal data. The approach, 
called M-Factorial Kriging, is compared to a conventional 
Factorial Kriging approach for filtering out the noise of a 
PSTM amplitude section. The gain in quality is shown. 
 

Why Using Spatially Varying Parameters 

In geostatistics, like in signal processing domain, 
stationary assumptions allow to use a wide range of 
(stationary) models for processing data. But most of the 
time, especially for large data sets, these assumptions 
appear to be defective. Then non-stationary geostatistical 
models can be selected: let us mention among several, 
FAI-k models [6], multi-point models [7], or gradual 
deformation models [8] for example. Unfortunately, these 
models do not address directly filtering issues. 

Conventional Factorial Kriging, as a conventional 
variogram-based approach, assumes stationarity over the 
data field for the underlying random function. In such a 
way, the variogram is considered as invariant whatever 
the location in the data field. Such invariance is never 
observed on real data sets when computing some local 
experimental variograms. Figure 1a  shows for example a 
seismic attribute which is locally contaminated by a 
footprint effect (W-E stripes). Figure 1b  corresponds to 
the global experimental variogram, computed from the 
whole data set, while Figure 1c  and Figure 1d  
correspond to local experimental variograms computed 
respectively into two areas, A and B, of equals 
dimensions. Local variograms differ highly from the global 
variogram. Moreover, variograms A and B are very 
different although computed from close data areas. In 
particular, the signature of the footprint is clearly visible 
on variogram A (periodic behavior of the N-S direction) 
but does not appear on variogram B.  
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Figure 1

Figure 1a: seismic amplitudes map
Figure 1b: global experimental variogram
Figure 1c: local experimental variogram, area A 
Figure 1d: local experimental variogram, area B
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This example illustrates the fact that applying 
conventional Factorial Kriging technique to real data sets 
may be based on poor fitting of the geostatistical model to 
the local characteristics of the data. As a consequence 
unexpected filtering results may occur. The use of 
spatially varying model parameters makes local 
adjustment of the Factorial Kriging model possible. 
Various non-stationary effects can thus be taken into 
account. As locally adjusted model provides more precise 
results, filtering results are improved, in particular into the 
framework of noise attenuation issues.  
 

M-Factorial Kriging 
 

Moving-GeoStatistics (M-GS) is an innovative technology 
which is fully dedicated to the local optimization of 
parameters involved in variogram-based models [9], [10]. 
By optimizing spatially varying model parameters, M-GS 
guarantees a better adequacy between geostatistical 
model and data. 
 

There are several approaches to compute such optimized 
parameters, called M-Parameters. A simple one consists 
in computing merely local variogram parameters in 
adjacent areas of the data field and then to interpolate the 
obtained parameters in order to make them available at 
every target grid node. More sophisticate algorithms 
currently under development are based on automatic 
validation techniques and morphological analysis. They 
simplify the determination of the M-Parameters and lead 
to promising results on various real cases that have been 
tested. 

Combined with Factorial Kriging technique, M-GS opens 
the way to optimal geostatistical filtering of noisy data. 
Conventional Factorial Kriging approach considers model 
parameters as constant parameters. On the contrary, M-
Factorial Kriging considers model parameters (as well as 
some computational parameters) as spatially varying 
parameters which must be optimized.  
 

Figure 2

Figure 2a: simulated signal
Figure 2b: simulated noise
Figure 2c: noisy data (simulated signal + simulated noise)
Figure 2d: experimental variogram and variogram model
Figure 2e: estimated signal by conventional Factorial Kriging
Figure 2f: range of the noise structure in X direction
Figure 2g: estimated signal by M-Factorial Kriging
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Figure 2  illustrates a comparison between both 
approaches. Some synthetic data are simulated by a SGS 
technique using varying structural parameters (Figure 
2a). We assume that these data correspond to the signal 
information. In the same way, non-stationary noise is 
generated (Figure 2b ). It is composed of vertical stripes 
of increasing width and variability from the left to the right. 
The noise is then added to the signal part leading to the 
noisy data set (Figure 2c ). Conventional Factorial Kriging 
and M-Factorial Kriging are tested for filtering out the 
noise of the noisy data set. 

With conventional Factorial Kriging approach, the global 
experimental variogram is fitted by a variogram model 
(Figure 2d ), which is then used for the filtering process. 
The signal estimated by conventional approach is shown 
in Figure 2e . When comparing it with the original signal 
(Figure 2a ), we can notice that some residual noise is still 
visible on the left part of the image. Moreover some signal 
structures are not well recovered. 

M-Factorial Kriging makes use of locally optimized model 
parameters. In this example, three main parameters are 
optimized: the structural orientation of the signal, the 
noise/signal variability and the range of the noise 
structure in X direction (Figure 2f ), which is directly 
comparable to the width of the stripes. The M-Parameters 
are introduced into the Factorial Kriging model for filtering 
the noisy data. The estimated signal is shown in Figure 
2g. It is well cleared out from the noise. In the meantime 
the signal is better restored.  

As a conclusion, M-Factorial Kriging leads to better noise 
attenuation and signal preservation by taking into account 
of local characteristics of the two components, noise and 
signal, into the geostatistical model. 
 

Noise Attenuation of a PSTM Amplitude Section  

Attenuating noise from post-stack seismic amplitudes 
cubes by geostatistical filtering technique may be 
complicated because complex types of non-stationarity 
are often encountered within such data sets: for example, 
signal absorption, geological structuration, spatial 
variations of signal-to-noise ratio or varying geometrical 
features of noise. M-GS models enable to take into 
account a certain number of these non-stationary effects 
through M-Parameters determination. As a consequence 
signal and noise can be better separated. 

Figure 3  illustrates a geostatistical noise attenuation 
process of a noisy PSTM amplitude section. Two noisy 
structures have been identified: a ~5 CDP structure and a 
~1 CDP structure. The last one is highly non-stationary 
from its intensity content, as its occurs mainly in the top of 
the section and disappears with depth. These two noisy 
structures must be removed from the data. 

In a first step, a nested variogram model, composed of 
two noise structure and one signal structure, is fitted to 
the experimental variogram computed from the whole 
data set. Based on the variogram model, raw data are 
then filtered by conventional Factorial Kriging technique. 
Signal estimation results are displayed together with raw 
data in a zoom area of the section on Figure 3a . 

Figure 3
Figure 3a: raw amplitudes and filtered amplitudes (conventional)
Figure 3b: M-Parameters - signal orientation (left), noise % (right)
Figure 3c: raw amplitudes and filtered amplitudes (M-GS)
Figure 3d: extracted noise - conventional (left), M-GS (right)
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In a second step, several sensitive parameters of the 
previous variogram model are optimized, leading to M-
Parameters. They correspond to ranges, sills and 
orientations of the noise and signal structures of the 
variogram model. For example, the vertical range of the 
signal, which can be related to the signal resolution, 
increases with depth in the whole section from 20mstwt to 
35mstwt. Two of the M-Parameters are displayed on 
Figure 3b . The first one corresponds to the orientation of 
the signal structure (degrees in cell units). It can be linked 
to the geological structuration. The second one 
corresponds to the amount of noise expressed in % of the 
total variability of the data. This parameter is highly 
spatially variable, ranging from 2 to 55%. The most noisy 
area is located in the northern part of the image around 
CDP 150. 

Finally, based on the M-Parameters, M-Factorial Kriging 
is applied to the raw data for estimating the signal 
component (Figure 3c ).  

4b
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Figure 4
Figure 4a: zoomed areas definition - A and B
Figure 4b: A - filtered amplitudes - conventional (left), M-GS (right)
Figure 4c: B - filtered amplitudes - conventional (left), M-GS (right)
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Filtered amplitudes obtained by this optimizing process 
can be compared to those obtained by conventional 
Factorial Kriging displayed on Figure 3b . The signal is 
better preserved with M-Factorial Kriging. It is confirmed 
when looking at the extracted noise (Figure 3d ): some 
residual geological information, visible on conventional 
Factorial Kriging results, is no more visible on M-Factorial 
Kriging ones. Figure 4  illustrates this gain in quality on 
two zoom areas (Figure 4a ). Figure 4b  shows that the 
signal is better restored, while the Figure 4c  proves that 
the noisy part of the data is better attenuated.  
 

Conclusions 
 

A proper integration of the structural complexity inherent 
to any large seismic dataset is required when applying 
Factorial Kriging for seismic noise attenuation. This 
integration reduces the risk that the model fits poorly the 
local data characteristics, leading to unexpected filtering 
results. 
 

M-Factorial Kriging approach enables to capture non-
stationary effects affecting spatial data. This innovative 
approach, which can be applied on 3D volumes, leads to 
more precise noise extraction and better signal estimation 
as it has been shown on a real PSTM amplitude section. 
The gain in quality may be particularly relevant for seismic 
processing centered on reservoir objectives preservation.    
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