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Abstract 

We present a new method for the solution of the 
gravimetric inverse problem applied to the reconstruction 
of the basement relief of discontinuous sedimentary 
basins where the density contrast between the sediments 
and the basement is supposed to be known and constant 
or varying monotonically with depth. The solution is 
stabilized through the total variation (TV) functional which 
does not penalize solutions presenting depth 
discontinuities. We compare the proposed method with 
the global smoothness (GS), the weighted smoothness 
(WS) and the entropic regularization (ER) using synthetic 
data produced by 2D and 3D basins with discontinuous 
basement relief. The solution obtained with the proposed 
method is better than those obtained with the GS and 
similar to or better than those obtained with the WS and 
ER methods. In contrast with the WS, the TV does not 
require a priori information about the maximum depth of 
the basin. In comparison with the ER, the TV is 
operationally simpler and requires the specification of only 
one regularization parameter. The methods TV, GS, and 
WS where applied to the gravity anomaly above the 
Steptoe Valley, Nevada, USA. The TV produced a 
basement relief estimate presenting sharp, high-angle 
discontinuities. The GS failed to reproduce a solution 
compatible with the tectonic environment of the area and 
the WS produced discontinuities with unsharpened 
edges. Moreover, the TV when compared with the WS 
defined more clearly a small and shallower sub-basin in 
the southern extreme of the area. The methods TV and 
ER were applied to the 1D gravity anomaly across the 
Buyuk Menderes graben, west Turkey, producing overall 
comparable solutions. The TV, however, produces better-
defined plateaus in the southern border of the graben. 

Introduction 

The interpretation of gravity anomalies for oil exploration 
in sedimentary basins consists mainly of the search for 
probable structural traps, like faults, through the mapping 
of the basement relief. The solution of this problem is 
unstable, reflecting the low information content in the 
gravity anomaly to retrieve the desired information. The 
usual procedure in this case is to introduce geological a 
priori information through the minimization of a stabilizing 
functional (Tikhonov and Arsenin, 1977). It is important 
that the geological information introduced via minimization 

of this functional be realistic with respect to the basement 
relief geometry; otherwise, the solution will be compatible 
with the data, will be stable, but will have no geological 
meaning. 

In the case of structural traps generated by small flexures, 
as in case of intracratonic basins, the basement relief is 
smooth and this a priori geological information is 
incorporated to the problem through a functional known 
as global smoothness (Oldenburg, 1974; Guspí, 1990 and 
Barbosa et al., 1997). The minimization of this functional 
penalizes sharp variations in the basement relief 
estimate, favoring, in this way, solutions exhibiting 
estimated depths at neighboring points close to each 
other. On the other hand, in the case of extensional 
basins, the basement relief is shaped by normal and listric 
faults, presenting locally smooth plateaus, separated by 
sharp discontinuities. In this geological environment it is 
more adequate to minimize functionals that do not 
penalize discontinuities in the solution. Among the 
functionals available in the literature, the weighted 
smoothness (WS) and the entropic regularization (ER) 
are particularly suited to the interpretation of a 
discontinuous basement relief.  

The WS (Barbosa et al., 1999) imposes that the 
estimated basement relief be overall smooth, allowing 
violation of this restriction at limited areas. This 
requirement introduces a certain level of instability in the 
solution, making it necessary to introduce a priori 
information about the basement maximum depth.       

The ER (Campos Velho and Ramos, 1997; Ramos et al., 
1999; Silva et al., 2007) consists in minimizing the first-
order entropy of the solution, which favors estimated 
solutions presenting discontinuities with large vertical 
slips, in contrast with the GS which penalizes such 
discontinuities. The minimization of the first-order entropy 
incorporates a priori information similar to that introduced 
in the WS, differing from it by requiring no a priori 
information about the maximum depth of the basement. 
This feature makes the ER a more robust method than 
the WS, requiring less a priori geological information to 
stabilize the solutions. On the other hand, the 
minimization of the first-order entropy tends to minimize 
also the zero-order entropy, favoring, in this way, 
solutions with a minimum number of discontinuities 
presenting very high and unrealistic slips. These solutions 
are not geologically feasible and are avoided with the 
“maximization” of the zero-order entropy. This 
“maximization”, in fact, avoids the excessive minimization 
of the zero-order entropy. The combination of the 
minimization of the first-order entropy with the 
maximization of the zero-order entropy requires the 
specification of two regularizing parameters, leading to an 
enormous operational difficulty. 
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We present a new gravity inversion method applied to the 
mapping of the discontinuous basement relief of 
sedimentary basins. The stabilizing functional is the total 
variation (Rudin et al., 1992; Acar and Vogel, 1994), that 
consists in minimizing the L1-norm of the spatial derivative 
of the function representing the basement relief. This 
functional does not penalize sharp variations in the 
solution, requires no extra a priori information as is the 
case of the WS, and, in contrast with the ER, requires the 
specification of only one regularization parameter.  

The application of the method on 1D and 2D synthetic 
data showed that it produces results similar to or better 
than the results obtained with the WS and ER methods. 
The proposed method was also applied to the Bouguer 
gravity anomaly of the northern portion of the Steptoe 
Valley, Nevada, USA, in the Great Basin province. This 
anomaly consists of gravity lows due to the presence of 
down thrown crustal blocks with large vertical 
displacements (Carlson and Mabey, 1963). The results 
were compared with those produced by the GS and WS, 
and showed a topography exhibiting not only sharper 
discontinuities, but also a better definition of a sub-basin 
at the southern portion of the studied area. 

Method 
 
Let og  be an N-dimensional vector of gravity 
observations. These observations are assumed to be 
produced by a sedimentary basin where the density 
contrast between the sediments and the basement is 
known and constant or varying with depth. We want to 
estimate the basement relief, S, (Figures 1a and 1b) 
using as interpretation model a set of M 2D or 3D vertical 
juxtaposed prisms, along, respectively, the x-direction 
(Figure 1a) or the x-and y-directions (Figure 1b). The 
thicknesses, pj, of the prisms are the parameters to be 
estimated (Figures 1a and 1b). The top of each prism 
coincides with the earth’s surface and all prisms have the 
same horizontal dimension.  

 

 
 

 

 
 

 

The gravity inversion consists in the estimation of vector 
[ ]TMpp ,,1 =p , given the vector [ ]TNgg 00

1
0 ,,)( ≡pg  

containing N observations of the gravity anomaly. The 
fitting of the gravity data is imposed by the minimization, 
with respect to p, of the nonlinear functional 2

)(pgg −o , 

where )(pg  is an N-dimensional vector containing the 
computed anomaly, using the interpretation model, at the 

same observation points, and ⋅  is the Euclidean norm. 

The ith element ( )pig  is the gravity anomaly produced 

by the M prisms at the ith observation point. This is an ill-
posed inverse problem characterized by unstable 
solutions. Thus, in order to stabilize it, one must introduce 
additional a priori information, which can be accomplished 
by classical regularization techniques such as the GS, 
where the solution is constrained to be smooth. In this 
case, the estimate ip̂  (thickness of the ith prism) must be 

close to the estimate jp̂  (thickness of the jth prism, 

adjacent to the ith prism), subject to fitting the data within 
the experimental precision. In the case of 2D basins, this 
proximity condition is imposed along the x-direction, 
whereas, in 3D basins, it is imposed along the x- and y-
directions. Mathematically, this condition is imposed 
through the minimization of the functional 

( ) 2

2

2

2
)( Rppggp µρ +−= o , where µ is the smallest positive 

value capable of producing stable solutions, and R is a 
matrix whose rows have only two non zero elements 
equal to 1 and –1, localized at the columns corresponding 
to parameters i and j, whose estimates must be as close 
to each other as possible.   

The WS method, developed by Barbosa et al. (1999), is 
specially designed to the interpretation of a discontinuous 
basement relief of a sedimentary basin. This method 
minimizes the functional 

( ) =pσ
2

)(pgg −o + µ s
2WRp + µ r 

2
maxpp − ,  

where µ s is the smallest positive value that, combined 

Figure 1a −Interpretation model for the case of 2D 
basins. 

Figure 1b − Interpretation model for the case of 3D 
basins. 
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with the largest positive value of µr produce stable 
solutions with a number of discontinuities compatible with 
the a priori geological information available, W is a 
diagonal weighting matrix and pmax is an M-dimensional 
vector of maximum depths of the basement relief, known 
a priori. The diagonal element wkk of matrix W assigns 
smaller weights to the constraint imposing proximity 
between the kth pair of adjacent prisms thickness 
estimates, ip̂  and jp̂ , which are associated with regions 

of sharp discontinuities in the basement relief. Matrix W is 
defined iteratively and automatically, being initialized with 
the identity matrix.  

Silva et al. (2007) applied the ER (Campos Velho and 
Ramos, 1997; Ramos et al., 1999) to gravimetric data 
generated by 2D sedimentary basins, where the 
basement presents sharp discontinuities. The ER consists 
in the minimization of the first-order entropy of the 
parameters estimates: 

         ),log(    )(
1

1 ∑
=

−=
L

k
kk SSQ p                 (1) 

with 

 ∑
=

=
L

i
ikk rrS

1

 and   ε+−= jik ppr ˆˆ , subject to 

the fit of the geophysical data within the expected noise 
level, with ip̂  and jp̂  being depth estimates of adjacent 

prisms, and L the number of such pairs. The physical 
meaning of the minimization of the entropy is displayed in 
Figure 2. According to Silva et al. (2007) the minimization 
of )(p1Q  implies on the minimization of the number of 
discontinuities in the estimates of the prisms thicknesses 
used to define the interpretation model. The global 
smoothness constraint produces estimates similar to the 
basin B1 (Figure 2a), whereas the minimization of )(p1Q  
favors estimates similar to basins B2 and B3 (Figures 2b 
and 2c). Figure 2d shows the values of )(p1Q  associated 
to the basins B1-B3 as well as the values of the zero-
order entropy, )(p0Q , defined by the equation (1) with 

∑
=

=
M

i
ikk rrS

1

 and ε+= ik pr ˆ . Note that a small 

decrease in )(p1Q  (between B2 and B3 in Figure 2d) 
corresponds to a great decrease in )(p0Q . In the 
gravimetric interpretation of extensional basins, we are 
interested in basins of type B2 because narrow basins 
like B3 are not geologically meaningful. Thus, it is 
necessary to avoid the excessive minimization of )(p0Q , 
and this is accomplished, algorithmically, through its 
“maximization”. In this way, the ER consists of the 
minimization of the functional 

)()()()( 110

2
0 pppggp 0 QQ γγτ +−−= , where 0γ  and 

1γ  are real positive numbers chosen on the basis of the 

following criteria. The value of 1γ , similarly to value of µr, 
must be the largest positive value producing stable 
solutions and leading to a number of discontinuities in 

accordance with the geological knowledge about the 
basin’s basement. The parameter γ0, is initially assigned a 
very small value (including zero). If the estimated basin 
geometry presents horizontal dimensions substantially 
smaller than the expected ones, on the basis of a priori 
geological knowledge, the value assigned to γ0 must be 
increased. 
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The total variation method (TV) consists in the 
minimization of the functional 

∑ +−+−=
K

ji pp
1

220 )()( βαϕ pggp , where pi 

and pj are the thicknesses of two adjacent prisms, K is the 
number of pairs of such prisms, α and  β are non negative 
scalars, β being always a small value (typically in the 
order of 10-4), introduced to avoid numerical singularities. 
Parameter α controls the overall stability and the degree 
of discontinuities present in the solution. The larger the 
value of α, the more stable is the solution and the larger 
is the number of discontinuities. 

The above methods were formulated as nonlinear 
optimization problems and solved iteratively. The GS and 
the WS were implemented using Newton’s method while 
the ER and the TV were implemented using the quasi-
Newton method. In all cases, the modification proposed 
by Marquardt (1963) was incorporated to guarantee 
convergence of the iterative process. The iteration for the 
TV method is stopped either when the maximum number 
of iterations is attained or when the value of the objective 
function remains below a threshold, established by the 
interpreter, for five consecutive iterations.  

Results of numerical simulations 

2D Basin 

Figure 3a shows in red dots the gravity observations 
generated by a 2D simulated graben, whose basement 
relief is, in general smooth, but presents, locally, sharp 
discontinuities (red line in Figure 3b). The density contrast 
between the sediments and the basement is -0.3 g/cm3.  

   

Figure 2 − (a)-(c) Basin types. (d) Corresponding values 
of de )(p0Q (continuous line) and )(p1Q (dashed line) 
associated to each kind of basin. 

Alexandre Moura
Stamp
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Figure 4 − Buyuk Menderes. (a) Observed bouguer 
anomaly (red dots) and fitted anomaly using the TV 
(solid black line). (b) Estimated basin relief using the 
TV (black) and ER (blue). 
 

Figure 3 − Simulated Graben. (a) Observed Bouguer 
anomaly (red dots) and fitted anomaly using the TV 
(solid black line). (b) True solution (red) and estimated 
basin relief using the TV (black line). 
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Pseudorandom, Gaussian noise with zero mean and 
standard deviation equal to 0.1 mGal was added to the 
theoretical gravity anomaly. The interpretation model 
consists of 60 elementary prisms with density contrast of  
-0.3 g/cm3. The solution produced by the TV with α = 20 
and β  = 0.001 (black line in Figure 3b) delineated with 
excellent precision the topography of the basement, in 
particular, its discontinuities. Figure 3a shows, in black 
line, the fitted gravity anomaly. 

3D basin 

Figures 5a and 5c show, respectively, in black contour 
lines and in perspective, a gravity anomaly generated by 
a simulated 3D basin, whose basement is characterized 
by step faults (Figure 5b). The density contrast between 
the sediments and the basement is -0.2 g/cm3. The 
theoretical gravity observations were contaminated with 
pseudorandom Gaussian noise with zero mean and 
standard deviation equal to 0.1 mGal. The interpretation 
model consist of a grid of 25 × 25 prisms with dimensions 
of 2 km in the x- and y- directions, with density contrasts 
equal to -0.2 g/cm3. The solution obtained by the TV 
method with α =1 and β = 0.001 (Figure 5d) reproduced 
with excellent precision the plateaus that define the 
topography of the basement, as well as the discontinuities 
separating them. Figure 5a shows, in red lines, the fitted 
gravity anomaly. For comparison, we show in Figures 5e 
and 5f the inversions of the same anomaly shown in 
Figures 5a and 5c employing, respectively, the GS and 
WS and the same interpretation model. The regularization 
parameters are: µ = 1.0 in the case of GS, and µs = 0.005, 
µr = 0.01, and a priori maximum depth of 4 km in the case 
of WS. The fitted anomalies (not shown) explain the 
observations within the experimental precision. The GS 
estimate (Figure 5e), as expected, produced an inferior 
result as compared with the one obtained with the WS 
(Figure 5f) and the TV (Figure 5d), not delineating the 
discontinuities of the basement relief. 

The solutions of the WS and the TV, successfully 
delineated the basement relief with comparable 
precisions. The TV, however, estimates flatter plateaus as 
compared with the WS. Moreover, differently from the 
WS, the TV does not required a priori knowledge about 
the maximum basement depth. 

Aplications to real data 

Buyuk Menderes 

Figure 4a shows in red dots the Bouguer anomaly of a 
gravity profile across the Buyuk Menderes valley (in West 
Turkey). The interpretation model consisted of 90 prisms 
with density contrasts varying with depth given by the 
hyperbolic law (Litinsky, 1989) 
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with 98.00 −=∆ρ g/cm3 and 597.2=β km (Sari and 
Salk, 2002). The result of the inversion with the TV and 
ER are shown in Figure 4b, in black and solid blue lines 
respectively. We note two main differences between 
these solutions:  i) the TV estimates a plane topography 
in the deepest part of the basement whereas the ER 
produces a curved one; ii) the topography estimated with 
the TV shows a better defined plateau on the SSE side, 
located about 20 km in the horizontal distance and depth 
equal to 0.9 km. 

Steptoe valley 

The Bouguer anomaly from the Steptoe Valley (Carlson 
and Mabey, 1963), corrected for deep crustal effects is 
shown in black contour lines in Figure 6a and in 
perspective in Figure 6b. The Steptoe Valley is located in 
the Basin and Range province, Nevada, USA, where the 
topography is dominated by the alternation of linear 
mountain chains and elongated valleys. This topography 
is the result of down throw and uplift of large crustal 

Alexandre Moura
Stamp
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blocks caused by the action of large extensional forces 
associated to the presence of intra-plate tectonic forces. 
The interpretation model is composed of a grid of 42 × 26 
prisms with dimensions of 1.25 km in the x– (N-S) and y– 
(E-W) directions, with density contrast of –0.3 g/cm3. 
Figure 6c shows the solution stabilized by the TV method 
with α  = 1.25 and β = 0.001. Figures 6d and 6e show, 
respectively, the estimates produced by the GS with µ = 
1.5 and by the WS with µs = 0.05, µr = 0.001, and a priori 
maximum depth of 3 km. The solution stabilized by the TV 
(Figure 6c) exhibit a very abrupt topography with well-
defined discontinuities at the borders not only of the main 
basin, but also of the southern sub-basin, in agreement 
with the tectonics of extensional forces, dominant in the 
Basin and Range province. Figure 6a shows, in red 
contour curves, the corresponding fitted anomaly. The 
GS, as expected, produced a smooth topography (Figure 
6d), with rounded edges, without evidences of 
discontinuities produced by gravity faults. The topography 
estimated by the WS (Figure 6e) shows several 
discontinuities typical of gravity faults, but with smaller 
slips than that ones produced by the TV. Moreover, the 
southern sub-basin is not so well defined in its edges due 
to the borders with less accentuated inclinations, and to 
the uneven bottom. The fitted data produced by the GS 
and WS (not shown) explain the observations within the 
experimental precision. 

Conclusions 

We presented a gravimetric inversion method for mapping 
the discontinuous basement relief of a sedimentary basin. 
The solution is stabilized with the minimization of the total 
variation (TV) of the solution vector. The solutions 
obtained with this method produced much better 
estimates of the basement relief (including its 
discontinuities) than the solutions obtained with the GS 
method. When compared with the WS and ER methods, 
the TV method shows similar solutions. However, it has 
the advantage of neither requiring a priori knowledge 
about the maximum basin depth (as is the case of the 
WS), nor the specification of two regularization 
parameters (as is the case of the ER). As a result the 
proposed method is operationally simpler and has a great 
potential in producing meaningful mappings of normal 
faults associated with petroleum trapping.  
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Figure 5 − Test on synthetic data. 3D 
Basin. (a) Gravity anomalies: observed 
(black lines) and fitted by the TV (red 
lines). (b) True model. (c) Perspective 
view of the gravity anomaly. (d) TV result. 
(e) GS result. (f) WS result.  

Figure 6 − Steptoe Valley (a) Bouguer 
anomaly (black lines) and fitted anomaly 
by TV (red lines). (b) Perspective view of 
the Bouguer anomaly. (c) TV result. (d) 
GS result. (e) WS result.  
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