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Abstract  
 
The aim of this work is to make a brief discussion of 
methods to estimate the parameters of the Generalized 
Pareto distribution (GPD). In order to illustrate the 
methods some parameters were estimated for the GPD, 
considering a sequence of intraplate earthquakes which 
occurred in the city of João Câmara in the northeastern 
region of Brazil. This region was continuously monitored 
for two years (1987 and 1988). In order to estimate 
seismic hazard in this area we address the following 
techniques: Moments, Maximum Likelihood, Biased 
Probability Weighted Moments, Unbiased Probability 
Weighted Moments, Mean Power Density Divergence, 
Median, Pickands, Maximum Penalized Likelihood, 
Maximum Goodness-of-Fit and the Maximum Entropy, the 
focus of this manuscript. Based on the threshold of 1.5 mb 
was estimated the seismic hazard for the city, and 
estimated the level of return to earthquakes of 
magnitudes 1.5, 2.0, 2.5, 3.0 mb and a 5.2 mb earthquake 
which occurred in November 1986. 
 
 
Introduction 
 
Earthquakes occurrences can cause impacts on society, 
therefore both the government and the researchers have 
tried to model this phenomenon so that they can be 
predicted with some certainty and efficiency, thus helping 
in preventive actions and in planning and implementation 
of public policies. 
 
In many practical situations there is interest in modeling 
the tail of the distributions, as occurs, for example, in 
earthquake distribution. This modeling should be done 
through a sequence of earthquakes, where you must 
observe the distribution of the maximum of a sequence of 
random variables independent and identically distributed 
and assume that xF  is unknown, and look for families of 

approximate models ( )[ ]nx XF  is to use the theory of 
extreme values, proposed by Fisher and Tippett (1928) or 
use an important theorem known as limit distributions 
above a threshold (POT), known as the theorem of 
Gnedenko-Pickands-Balkema-Haan (1941). 
 
The purpose of this study is to model the seismic risk for 
the municipality  João Câmara, NE do Brasil, the 
generalized Pareto distribution (GPD), through a 
threshold selected by the graph of mean residual life, then 
make predictions / forecasts based on the period and 
level of return of earthquakes above that threshold and 
finally estimate the return period of the earthquake in 
history occurred in the town 1986 which reached a 
magnitude of  5.2 mb. 
 
 
Methodology 
 
Let nXX ,....,1  be random variables independent and 

identically distributed, with distribution function XF .  Let 

also consider 
xFx   the upper limit of the distribution of 

XF , We call "excedances" those values iX  such that 

uX i >  (a selected threshold). Denoting by uN  the 
number of excess of the threshold  u, we define 

∑
=

>=
n

i
uXu i

N
1

)(1  

 
where: 
 
                       => )(1 uX i

1 if uX i >  

                       => )(1 uX i
 0, otherwise. 

 
The excedances beyond a threshold u, denoted by 

nuYY ,....,1  are the values  0≥− uX i . Figure 1 shows 

the observations  121 ,...., XX  and the excedances 
beyond the threshold u=4. 
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Figure 1: Illustration of the bar graph of the observations 
of a sequence of random variables  121,...., XX , which 
highlight the excesses above the threshold u=4. 

 
 
Hence, given a threshold u, the distribution of values of x 
over u is given by: 

{ } ( )
( ) 0 ,
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1| >

−
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=>+> y
uF

yuFuXyuXP , 

which represents the probability exceeds the value of x u 
by at most an amount y, where y=x-u. F  is the 
distribution of a generalized extreme value, such that: 
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, and 

that for high values of x  should be an expansion to 

Taylor so that  ( ) ( ){ }xFxF −−≈ 1ln , replacing and 
re-arranging for u , we have:  
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and on a similar way for 0>y ,  
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Hence, 
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with ( )μuξσσ −+=
~

. Thus, the distribution function of 

( )μX −  conditioned to  uX > , is approximately:  
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Coles (2001) states that the family of distributions defined 
above is called the generalized Pareto family. The 
conditional distribution function is approximately the 
generalized Pareto distribution (GPD), representing the 
three distributions in one way, under the γ-

parameterization: ( ) γγγ
1

11);( −+−= xxW . Just as 
the generalized extreme value distributions (GEV) are the 
distributions limit to the maximum of the GPD are the type 
of parametric forms to limit distribution of excesses (The  
Balkema and de Haan Theorem). Generalized Pareto 
distributions are of the form of Exponential ( 0=γ ), 

Pareto type II ( 0>γ ) and Pareto or Beta ( 0<γ ).  
 
The parameters of the generalized Pareto distribution to 
excesses that exceed thresholds (POT) are determined 
by those associated with the generalized extreme value 
distributions (GEV). In the limit of ( )xF  when 0→ξ  
has the cumulative distribution of Gumbel: 
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and the distribution function of ( )μX − , conditional to 

uX > , is approximately: ( ) 
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σ
yyH exp1 , 

com   0>y . 
 
Figure 2 presents the graphs of the function of distribution 
of GPD to 4,0−=ξ  (Pareto or Beta), 0→ξ  

(exponential) and 4,0=ξ  (Pareto type II), all with 

2=σ . Note that as in GEV the parameter ξ   
determines the tails shape of the distribution. 
 
Finally, the GPD and GEV distributions are related as 
follows: 

 
( ))(ln1)( xHxG += , ( ) 1)(ln −>xH . 

 
This relationship explains why the densities of GPD have 
extreme tail asymptotically equivalent to a GEV.  
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Figures 3 and 4, illustrate this fact and shows the 
closeness of the GPD tails of some distributions with 
some GEV. 
 

 
 

Figure 2: Illustration of probability density function of the 
three forms of the generalized Pareto distribution (GPD). 

 
 

 
 
Figure 3: Densities of the GPD and GEV, common 
Pareto (Beta) and Weibull, both with  0,2ξ −= . 
 
 
Threshold Selection 

 
The choice of threshold u in the face with some problems, 
because a value for u too "high" implies a small number 
of observations in the tail, which may result in increased 
variability of the estimators. However, a threshold is not 
high enough not satisfy the theoretical assumptions and 
estimates could result in distorted, so one idea is to track 
the extreme values as will be described 

  
To determine the threshold used to the graphic analysis 
of the linearity nu  observations that exceed certain 
thresholds in the various samples. Thus the plot of mean 
residual life, used for visual determination of u is 
constructed as follows 
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here xxx nu
,...,, 21  consist of observations that exceed 

u  and xmax  is the higher of the observations. After the 
selection of the threshold the next step is the estimation 
of the parameter to be seen. 
 

 

 
 

Figure 4: Densities of the GPD and GEV, Fréchet and 
Pareto type II, both with 2,0=ξ . 
 
 
GPD Parameters Estimation 
 
Several methods of estimating the parameters of the GPD 
have been proposed, which in recent years the method of 
maximum entropy (POME) has been used by several 
authors, generally Sing and Guo (1995), Oztekin (2004), 
where the POME when compared with other methods, 
obtained lower mean square error. So to estimate the 
parameters of the GPD by maximum entropy simply solve 
the following equations. 
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The solution of these equations must be done by 
numerical methods and simulations. 
 
To check the accuracy of the estimator he was compared 
by mean square error with the following methods: 
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methods of moments (MOM), Pickands (Pickands), by the 
probability weighted moments: biases and non-bias  
(PWMB, PWMU), average density difference  (MDPD), 
maximun goodnes of fit (MGF), median (MED), penalized 
maximum likelihood  (MPLE) and the maximum likelihood  
(MLE), while there, depending on the value of not always 
in the terms of regularities are observed, however  
Brabson e Patutikof (2000), simulations using observed 
that  )5,0;5,0(    −∈ξ , then the maximum likelihood 
estimator of satisfies the conditions of regularity, so to find 
it simply solve the equations below by numerical 
methods, since the analytical solution is not possible. 
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Discussions 
 
Data analyses were done based on the R software 
(Language and Environment for Statistical Computing), 
version 2.8, through the package POT. The data used 
were from an earthquake sequence continuously 
monitored from 23/05/1987 until 07/07/1988 in the town of 
João Câmara, NE Brazil. 
        
In Figure  5, we plot the mean residual life time in order to 
find the threshold of about 1.4mb. The choice of the 
threshold using this procedure is not easy. However, in 
the same figure, we can see that some kind of linearity 
starts around 1.5mb For this reason, we have chosen u = 
1.4 mb. In Figure 6 we see that the choice of the threshold 
follows the recommendations of Coles (2001). Since the 
threshold is very low, it will affect the asymptotic behavior. 

 
Figure 5: Graphical representation of the mean residual 
life time of the earthquakes – a tool for selecting the 
threshold of extreme values. 

 

 
 

Figure 6: Graphical representation of the temporal 
dispersion of the earthquakes. The red line is the selected 
threshold. 

 
 

After the selection of the threshold u, we will examine the 
parameters of the GPD, drawing greater attention to the 
shape parameter, because it defines the type of 
generalized Pareto distribution used to estimate the 
earthquake. In Table 1 we present not only the estimates 
for the shape parameter, but also for the scale of all 
proposed methods and the standard error associated to 
each one. 
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As the shape parameter defines the type of distribution 
we see in Table 1 that the proposed distribution to model 
the earthquake hazard is the Pareto or Beta, both for 
Maximum Entropy (POME) and Maximum Likelihood 
(MLE), since they have smallest standard errors. 
 
Figures 7 and 8 show the fit diagnostics for GPD, 
considering the POME and MLE methods. We note that 
the graph of probabilities and quantiles the fittings are 
very good. It can also be observed from this diagnostics 
the goodness of the empirical density fitting and the 
information brought by the bottom right graph in Figure 7, 
related to the level and return period indicating that we 
expect a 1.5mb earthquake at least once every ten days. 
However, the 5.2mb earthquake is more unlikely to occur 
again, because it is expected to occur at least once every 
in about three hundred years by extrapolation, 
considering both the MLE and the POME. 
 
 
Table 1: Estimated parameters of the generalized Pareto 
distribution, through the proposed methods of estimation 
and the standard error of the parameters of shape and 
scale. 

 
Method Estimate Standard Error 

^
ξ  

^
σ  

^
u  

^
ξ  

^
σ  

POME -0,2998 0,4564 1,4340 0,0506 0,0455 
MLE -0,2892 0,5820 1,4340 0,0555 0,0466 
PICKANDS -0,4899 0,5496 1,8070 0,9124 0,8260 
MOM -0,2163 0,4427 1,8070 0,0864 0,0522 
PWMB -0,1737 0,4272 1,8070 0,1049 0,0554 
PWMU -0,1682 0,4252 1,8070 0,10455 0,0551 
MDPD -0,2766 0,4660 1,8070 0,3589 0,3245 
MED -0,2356 0,5127 1,8070 0,2583 ,3015 
MGF -0,2163 0,4427 1,8070 0,0864 0,0522 
 

 
Figure 7: Earthquakes at João Câmara from GPD via the 
Maximum Entropy Methodology (POME). 
 

 
Figure 8: Earthquakes at João Câmara from GPD via the 
Maximum Likelihood Methodology (MLE). 
 
 
Final Remarks 
  
As the methodology for estimating the parameters of the 
Generalized Pareto Distribution (GPD) of the methods of 
maximum likelihood and maximum entropy (POME) were 
those that were more satisfactory. 
 
The Generalized Pareto distribution (GPD), with 

2998,0−=ξ  by POME and 2892,0−=ξ by MLE, 
showing that the earthquakes in the city of João Câmara 
can be modeled in a satisfactory way by a GPD with 
negative shape parameters, so the tail should be modeled 
by a Pareto or Beta distribution. 
 
We point out the fact that the return period for a 1.5 mb 
earthquake is ten days. For an earthquake of magnitude 
5.2mb the return period of approximately 300 years. 
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Appendix: Observational Dataset 
 
Our study area is located in the eastern part of the 
Potiguar basin, northeastern Brazil (Figure A1), which, 
within the present knowledge of historical and 
contemporary seismicity, is one of the most active areas 
in intraplate South America. Seismic activity in this area is 
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known since 1808 and has been mainly characterized by 
earthquake swarms that can last four years and by events 
up to 5.2 body-wave magnitude (mb). The earthquakes 
have occurred in the upper crust, which has not 
undergone any major tectonic event since the Pangea 
breakup in the Cretaceous (Bezerra et al., 2007). 
 
 

 
 
Figure A 1: Simplified geological map of the Potiguar 
basin and area studied in detail. Focal mechanisms 
indicate main epicentral areas. The white bars indicate 
direction of P (SHmax) axis. Inset: South American 
continent. 
 
Figure A2 shows the epicenters used in this study. We 
identified two seismogenic faults in the João Câmara  
area. These epicenters occur both in the crystalline 
basement and in the Potiguar basin. Their related 
hypocenters, however, are located in the crystalline 
basement at a depth from ~ 1 to ~ 9 km (Bezerra et al., 
2007). 
 

 
 
Figure A 2: Map of João Câmara (JC) epicentral area 
depicting geology and seismicity. Epicenters are from the 
selected telemetric-network dataset. Station JCAZ 
(triangle) is used as a reference. The orientation of 
patterns in the legend indicates foliation trend. Station 
JC01 quoted in text is  7 km west of JCAZ and outside 
the map (from Bezerra et al., 2007) 
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