
 
A method for water velocity estimation 
Gerson Luis da Silva Ritter,PETROBRAS/E&P/GEOF/PG, COPPE/Universidade Federal do Rio de Janeiro 
 

Copyright 2009, SBGf - Sociedade Brasileira de Geofísica 

This paper was prepared for presentation during the 11
th
 International Congress of the 

Brazilian Geophysical Society held in Salvador, Brazil, August 24-28, 2009. 

Contents of this paper were reviewed by the Technical Committee of the 11
th
 

International Congress of the Brazilian Geophysical Society and do not necessarily 
represent any position of the SBGf, its officers or members. Electronic reproduction or 
storage of any part of this paper for commercial purposes without the written consent of 
the Brazilian Geophysical Society is prohibited. 
 ____________________________________________________________________  

Abstract 

 
It is known that the velocity of propagation of sound 
waves in the water can vary over time. For a 3D seismic 
survey, where data is acquired over the same location but 
at different dates, this implies that the same reflection 
point will registered at different times. The first step to 
take this effect into account in seismic processing is to 
measure this velocity. This article presents a 3D 
tomographic method that directly estimates the water 
velocity. Using picked water bottom reflection and an 
initial depth and velocity model, it is shown that good 
results are obtained inverting only two parameters: the 
variation of the propagation velocity and a constant 
variation of the reflector depth in relation to the initial 
model. The method is tested with real data. The results 
show that the velocities are well estimated.  

Introduction 

 
The propagation velocity of sound in water (water velocity, 
for short) is a function of some physical properties of the 
sea water, especially temperature and salinity (Sheriff, 
1991). As these can vary seasonally, so does the water 
velocity. In a 3D seismic survey, it is not unusual adjacent 
sail lines to be acquired in different dates. If in the interval 
between shooting these lines (which can be days, weeks 
or even months) the water velocity has  changed, then the 
recorded times of the same reflection points will be 
different. If not taken into account in seismic processing, 
these time differences degrade the quality of processes 
such as stacking and migration (Wombell, 1996). 
The time shifts associated with water velocity variations 
are typically a deep water problem. The magnitude of the 
time shift is proportional to the distance the wave travels 
in the water. So, the deeper the water, the greater the 
time shift. Also, as a consequence, the larger the offset, 
the greater the time shift. In general, before taking the 
trouble to compute the water velocity and applying it to 
the data, one has to study if the magnitudes of the time 
shifts are large enough to adversely affect the data.  
Some methods have been presented that measure the 
water velocity or the corresponding reflector time shift, 
and use this information to correct the data to a constant 
water velocity medium. The most straightforward method 
is to estimate the water velocity using a NMO based 
velocity analysis (Wombell, 1996). But, where the sea 
bottom is dipping, this estimation will be wrong by a factor 
of 1 cos θ , where θ is the dip angle. Furthermore, if the  

 

 
sea bottom is complexly structured, the moveout will not 
be hyperbolic in the CMP domain, making the velocity 
analysis more uncertain. There are methods that obtain 
the velocity in an indirect way (Fried & MacKay, 2002). 
Their method is based on the minimization of the time 
differences of the water bottom reflection projected to 
zero offset. It requires data overlap from different sail 
lines, a condition which is not always satisfied.  
The method here presented is based on a 3D 
tomographic inversion of velocity. It uses as input the 
measured times of the water bottom reflection for a sail 
line, and an initial 3D model of the sea bottom and an 
initial water velocity. The algorithm computes updated 
water bottom and velocity models that minimize the 
difference between the measured and modeled travel 
times. It uses data from a single sail line, so it does not 
require data overlap. As the modeled travel times are 
computed via ray tracing through the model, it naturally 
takes into account the structure and dips of the water 
bottom. 

Tomographic inversion of the water velocity 

 
Let me now formally state the problem. I will assume for 
now that data from only one sail line is used. Let t be 

travel time of the seismic wave between the source (s) 
and the receiver (r), reflected at the water bottom. 

 
t = Ts,r  (m    )                   

 
where T is a non-linear functional that depends on the 

source and receiver position and m     is a model vector that 

describes the medium where the wave propagates: 
 

m    =  z x, y , vs x, y  T  
 
where z x, y  describes the water bottom surface and 

vs x, y  describes the water velocity of the wave 

associated with the source (s). 

As it is usual in tomography, I will use the slowness, 

s = v−1, instead of velocity, because the travel time is 
linear in this parameter. So,  
 

m    =  z1, z2 , … , znz
, s 

T
= [z , s]T 

 
The problem to be solved is the following: given a set of k 

measured reflection times (τi , i = 1, … , k ), each time 

characterized by its source and receiver, (si , ri) we want 

to estimate the model m    , in such a way that the functional  

ϕ m      below is minimum. 

 

ϕ m     =   Tsi ,ri
 m     − τsi ,ri

 
2k

i=1       

 
The functional ϕ m      can be minimized by the Gauss-

Newton algorithm, which can be briefly described as 
follows (Aster, Borchers, & Thurber, 2005): 
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1. Given an initial model m0 

2. Solve the following system for Δm         : 

   J  m    k 
T

J  m    k Δm    = J  m    k 
T
 T    m    k − τ         

 

3. m    k+1 = m    k + Δm     
4. Go back to step 2, until  Δm     2 < ε 

In the algorithm above,  J  is the Jacobian  : 
 

Ji,j =
∂Ti

∂mj
,    i = 1, … , k   mj = z1 , z2, … , znz

, s 

 
The parameter ε is a small number that controls the end 

of the iterations. 
The computation of the modeled times Ti(z , s) must be 

done numerically. The partial derivative 
∂Ti

∂s
 can be easily 

computed. The modeled time Ti(z , s) can be writen as: 

 
Ti z , s = s × di(z )   

 
where di(z ) is the distance source-reflector-receiver. 

Therefore, 
∂Ti(z , s)

∂s
= di(z ) 

 
A simple solution can be obtained if we consider that the 
initial depth model can only vary constantly in the vertical 
direction. In this case, there will be only one depth 
parameter to be estimated, the constant depth 
displacement of the water bottom surface, Δz. The 

problem of inverting a large, sparse matrix can, in this 
way, be reduced to inverting for only two parameters. The 
Jacobian to be computed is then: 
 

J =

 
 
 
 
 
∂T1 z , s 

∂z

∂T1 z , s 

∂s
⋮ ⋮

∂Tk z , s 

∂z

∂Tk z , s 

∂s  
 
 
 
 

 

 
The variation of the model to be solved is: 
 

∆m =  
∆z
∆s

  

 

The partial derivative 
∂Ti (z  ,s  )

∂z
 could be computed using 

finite difference methods, for example. But, there is a 
better way. The variation in the reflection time due to a 
small variation in the depth of the reflector is given by 
(Stork & Clayton, 1991): 
 

∆t =
2 ∆h cos θ

v
 

 
where ∆𝑡 is the time variation in the reflection time, ∆ℎ is 

the variation in the reflector position in the direction 
normal to its surface, 𝜃 is the angle between the ray and 

the normal to the surface (i.e. , the reflection angle), and 𝑣 

is the propagation velocity above the surface (i.e., the 
water velocity). 
The ∆𝑡 above is written as a function of  ∆ℎ. To write it as 

a function of ∆𝑧, the vertical depth variation, it is easy to 

show that  
 

∆ℎ =  ∆𝑧 × 𝑐𝑜𝑠 𝛼 

 
where 𝛼 is the angle between the normal and the vertical 

direction. Therefore, the derivative 
𝜕𝑇

𝜕𝑧
 in the Jacobian can 

be computed as  
 

𝜕𝑇

𝜕𝑧
 ≅  

∆𝑡

∆𝑧
=  

2 𝑐𝑜𝑠 𝛼 𝑐𝑜𝑠 𝜃

𝑣
 

 

Real data example 

 
I applied the method developed in the previous section to 
a real 3D survey, acquired in the deep waters off the 
Brazilian coast. The water bottom is more than 2000 m 
deep. 
The first step in the inversion sequence is to define the 
initial depth model. From a previously time migrated data, 
I picked the water bottom reflection time. I applied a 
simple constant velocity, vertical ray, time-to-depth 
conversion to create the depth model.  
I chose 17 sail lines, each with approximately 250 shots, 
to estimate their water velocities. In each line, 
approximately 570,000 traces were processed. Figure 1 
shows the shot location map of these sail lines. Note that 
they have a varied degree of overlap among them. As 
each line is processed independently, this overlap or lack 
of it does not matter. 
Choosing the initial velocity model is the second step in 
the inversion, and the easiest one.   I chose 1500 m/s as 
the initial velocity 
The third step in the processing is the picking of the water 
bottom reflection for each trace. This is the most 
challenging step in the method. I started applying a phase 
filter to convert the wavelet to zero-phase and then picked 
the highest amplitude. The high quality of the data and 
the absence of significant noise allowed for great 
confidence in the picking.  
For computing the travel distance between source, 
reflector and receiver, needed to build the Jacobian, I 
used numerical ray-tracing 
Having all the necessary input, the velocity and depth shift 
estimation were done for each of the 17 sail lines. Two 
iterations of the Gauss-Newton algorithm were done, but 
convergence was achieved in the first iteration. Table 1 
shows the results obtained.  
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Sail Line Δz (m) V (m/s) 

101 -7.7 1499.4 

102 -7.0 1500.0 

103 -7.1 1497.4 

104 -7.4 1498.6 

105 -8.0 1500.8 

106 -7.9 1496.3 

107 -7.5 1496.9 

108 -7.1 1497.8 

109 -6.7 1499.4 

110 -6.6 1500.0 

111 -7.0 1499.9 

112 -6.9 1499.7 

113 -6.0 1500.9 

114 -7.7 1499.8 

115 -6.6 1500.7 

116 -7.4 1500.1 

117 -5.7 1500.1 

 

Table 1: Estimated depth variation and velocities for each 
of sail lines. 

The results were checked with two different methods: the 
analysis of the residuals and migrating the data with the 
estimated velocities. The time residuals  𝑟𝑖  are the 
difference between the modeled times and the picked 
times for each trace 𝑖. 
 

𝑟𝑖 =  𝑇𝑖 𝑚   
𝑘 − 𝜏𝑖 , k=0 or 2 for the initial and last model 

 
Figure 2 shows the histogram of the residuals for 4 of the 
lines processed. In all of them (and also in the other lines, 
not shown here) more than 90% of the samples are 
between -2 and +2 ms. The peaks of the distributions are 
approximately 0 ms. The possible sources of errors are 
approximations in the modeling, assuming constant water 
velocity, vertically and laterally, errors in the source and 
receiver coordinates, errors in the source and cable 
depths and errors in the picking of the water bottom 
reflection. Nevertheless, given that the sample interval is 
4ms, that most of the residuals are less than this, and the 
simplicity of the inversion, I think the results are very 
good. 
The second method of checking the results is to use the 
estimated velocities to migrate the data. To do this I used 
a Kirchhoff 3D depth migration algorithm, modified to take 
into account the water velocity associated with each sail 
line. I first chose a CRP whose migration aperture area 
included data from sail lines with the greatest water 
velocity variation among them. This CRP was first 
migrated with one velocity for all lines, equal to the 
average of water velocities of the lines that were in its 
aperture area. Then it was migrated with the modified 
Kirchhoff algorithm, with each trace being migrated with 
the water velocity of its sail line. The results are shown in 
figure 3. It is clear that the CRP migrated with the velocity 
appropriate for each sail line is the best result. 

Figure 4 shows the result of stacking the migrated CRP’s 
for the inline Y=1875 m with one velocity for all data and 
with the estimated velocities for each sail line. Again, the 
resulting water bottom reflection shows a much uniform 
appearance in the later than in the former.  Nevertheless, 
the overall structure of the reflector is the same. 
 
Conclusion 
 

The method presented in this article successfully 
estimated the water velocity. This conclusion was reached 
applying the estimated velocities in a modified Kirchhoff 
migration algorithm and checking for the residual move-
out  in the CRP’s. 
Unlike other methods it naturally takes the water bottom 
dip into account and it does not require data overlap. 
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Figure 1 : Shot point map 

Figure 2 : Histogram of the residuals 
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Figure 4 : Inline (Y=1875) migrated with the same velocity (v=1499.1 m/s) for all sail lines (above) 
and with velocities specific to each sail line, according to table 1 (below). 

Figure 3 : CRP at (X=17000,Y=1875) migrated with the same velocities for all sail lines 
(above) and with velocities specific for each sail line (below). Note the reflections 
appearing at the bottom of the crp migrated with line-specific velocities. 

 


