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Abstract 

The Gaussian Beam (GB) approach is a (zero order) 
complex paraxial ray theory, that is a harmonic solution of 
the wave equation in ray centered coordinates. It has 
been considered a more physical representation of the 
wavefield than the standard ray theory. The regularity in 
the description of the wavefield, as well as its high 
accuracy in some singular regions of the propagation 
medium, transformed the use of GB’s into a strong 
alternative to seismic modeling and imaging problems. In 
this paper we make use of the flexibility in imaging of the 
true amplitude prestack Kirchhoff depth migration, in 
addition to the regularity of the wavefield representation 
by superposition of GB’s, to develop a new true-amplitude 
prestack depth migration.  As a way of controlling, in a 
very stable way, some quantities used in the construction 
of the beams, we consider some information based on the 
Fresnel volume elements (Fresnel zone radius) around 
the reflection point in depth and its counterpart, the 
projected Fresnel zone. The result is a robust and stable 
prestack depth migration algorithm able to efficiently 
determine the plane wave reflection coefficients and 
depth seismic images in complex geological medium. 

Introduction 

In the recent years we have found in the geophysicists 
literature many studies about the superposition of paraxial 
Gaussian beans as an alternative solution of the seismic 
wave equation  (Müller (1984), Cěrvený (2000), and 
Popov (2002)). The Gaussian beam method advantages, 
e.g. the regularity of the wavefield determination even in 
presence of caustics or shadows zones, have also 
attracted the attention of people that work with seismic 
data processing. The possible combination of the 
flexibility of the Kirchhoff type migration and the 
robustness of the Gaussian beam approach has 
motivated the proposition of some Gaussian beam based 
migration alternative methods (Hill, 1990; Hill, 2001; 
Albertin et al., 2004; Ferreira and Cruz; 2004; Gray and 
Bleistein, 2009).  

In the present paper we propose a new derivation of the 
true-amplitude prestack depth migration, by using the 
Gaussian beam superposition integral to describe the 
seismic wavefield in the true-amplitude migration 
operator. Our approach is based on the representation of 

the seismic wavefield vector by a Gaussian beam 
superposition integral (Cěrvený, 2000), that permits an 
analytical solution in locally arbitrary observation 
coordinates. By using this result in the true-amplitude 
prestack depth migration operator given by Schleicher et 
al. (1993), we consider it is  a sufficient representation of 
the seismic wavefield. Through the stationary phase 
method, we determine the modified weight function used 
for obtain asymptotically an estimation of the plane wave 
reflection coefficient and a high resolution seismic 
imaging.  In this case there is no limitation about 
acquisition configuration, since our algorithm is built as a 
modification of the general true-amplitude migration 
method presented by Schleicher et al. (1993).     

In comparison with the result of Sun et al. (2000), our 
approach can be interpreted as a beam stack migration 
operator with the sources and receivers patches specified 
by the integration domain of the Gaussian beam 
superposition integral. In the stationary phase situation 
the central point of the Gaussian beam stack domain 
coincides with the critical point of the asymptotic analysis 
of the true-amplitude migration integral. Due to one 
seismic trace can participate in multiple adjacent 
supergathers, the Gaussian beam stack migration 
formalism here presented is more general than the beam 
Kirchhoff migration approach presented by Sun et al. 
(2000). Differently of other migration approaches, we take 
care about constraints of the Gaussian beam 
superposition integral domain, which is limited to the 
maximum width of a projected Fresnel zone (Hubral et al., 
1993 and Schleicher et al., 2004). For common-offset 
configuration we show the relationship between the 
weight function derived by Albertin et al. (2004) and the 
obtained by our approach.  

The proposed algorithm is applied to synthetic seismic 
data in two examples: the first is a common-offset seismic 
imaging of the Marmousi dataset; and the other case is 
an example of estimation of the plane wave reflection 
coefficients for a synclinal model.  

3-D Gaussian beam method 

In case of a 3-D compressional point source, we consider 
a congruence of rays with the ray parameters given by 
the spherical coordinates ),( ϕθ , with origin at the source 

position. Each central ray is defined by ),,( ϕθsrr o


= , 
being s  the ray arc length. In the vicinity of the central 

ray )(sro


, the paraxial Gaussian beam approximation of 
the principal component of the seismic  wavefield  is given 
by (Popov, 2002): 
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where ),( 21 qq  are the ray centered coordinates 
associated with a right-hand Cartesian system of the 
plane perpendicular to the central ray.  The complex 

number 1−=i ,ω  is the angular frequency, 

dssrdt o )(

=  is the unity tangent vector along the 

central ray, )(svv pp = and )(soo ρρ = , and )(soτ  

are the P-wave velocity, the density and traveltime along 
the central ray. The ,jkM with 2,1, =kj , are elements 

of the 2x2 matrix defined by: 

                              1−= PQM    ,                                 (2)  

being the 2X2 matrices P  and Q solutions of the 
dynamic ray tracing systems (Popov, 2002 and Cěrvený, 
2000), that under complex initial conditions present the 
following properties: 1) 0det ≠Q  for arbitrary s ; 2) the 

complex valued matrix M  is symmetrical, i.e. 

MM =T ; 3) The  imaginary part of M  is positive-
defined. The Gaussian beam method can be used in 
more general cases, i.e. not only for point source, if the 
properties of the high frequency wavefield are preserved, 
by considering that initial data oφ  are specified on a 
known surface.   

Gaussian beam superposition integral 

Let us specify a bundle of reflection central rays by using 
ray parameter coordinates ),( 21 γγ=γ , starting and 
ending on the measurement, in general, curved 
surface SΣ . A source and a receiver on SΣ  has the 

position vectors sx and gx with respect to a global 

Cartesian system. In the paraxial vicinity of the central 
rays, the primary reflection P wavefield is calculated in a 
reference point ox  by the superposition integral over 

paraxial Gaussian beams (Popov, 2002) ,  

),,;,,(),(),( 21212121 ωγγγγφγγω qqsdd
BD

oo uxU ∫∫= .  

(3) 

The superposition integral (3) depends on the chosen 
Gaussian beam free parameters and initial amplitudes.  
Müller (1984), Cěrvený (2000), Popov (2002) gave 
optimized criteria to efficiently calculate the seismic 
wavefield by means of the superposition of paraxial 
Gaussian beams.   

A more suitable version of integral (3) for migration and 
seismic inversion problems, in frequency domain, is given 
by (Cěrvený, 2000), 

∫∫ ×Φ==
BD

o dd ),(),( 2121 γγγγωξξU  

)],(exp[),( 21 boo Ti ξξu ωγγ . 

(4) 

The single parameter vector ),( 21 ξξ=ξ  is used to 
specify acquisition points with respect to local 2-D 
Cartesian systems at the start and end points of a central 
ray, obeying the following relationships: 

 ξΓxξx ∆+= Ssos )(   and   ξΓxξx ∆+= Ggog )( ,    (5) 

where ),( sss yxx  and ),( ggg yxx are Cartesian 

coordinates at the source and receiver positions, in the 
vicinity of the fixed pair ( sox , gox ). The difference 

oξξξ −=∆ . The 2x2 constant matrices sΓ and rΓ are 
specified according to the selected acquisition geometry, 
which can be a null, 0 , or identity, I , matrices.     

The exponential factor ),( boT ξξ is the complex second 
order paraxial reflection traveltime, which is described as 
function of the parameter vector bξξ = , being oξξ =  a 
fixed coordinate vector, also called the central point of the 
Gaussian beam superposition integral domain, and it is 
expressed by: 

+−⋅−= )()()(),( obSbsbRboT ξξΓξpξξξ τ  

).)(()(
2
1)()( obbRobobGbg ξξξHξξξξΓξp −⋅−−−⋅  

(6) 

The time )( bR ξτ  is the reflection traveltime of the central 
ray that starts and ends at the source and receiver 
position coordinates ),( sss yxx  and ),( ggg yxx , 

respectively, within the superposition integral domain 

BD . The vectors sp and rp are the projections of the 
slowness vectors of the central ray at source and receiver 
2-D local Cartesian coordinate systems. The paraxial 
distance vector )( ob ξξδ −= is assumed to be 

sufficiently small. The 2X2 complex-valued matrix RH  
has a real part with components given by the second 
order derivatives of the reflection traveltime on relation to 
the paraxial distance vectorδ , providing the shape of the 
Gaussian beam; and its imaginary part is chosen 
arbitrarily in a way to define the Gaussian beam width.  

In the equation (4) the weight function Φ  compensates 
for using the standard zero-order ray-theory complex-
valued amplitude of the primary reflection wavefied 
vector, ou , and it is determined by applying an 
asymptotical analysis (Bleistein, 2008) or by simultaneous 
diagonalization of complex-valued quadratic form method 
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(Cěrvený, 2000), and equating the result to the zero-order 
term of the ray series. To obtain the solution of integral 
(4), the integration variables ),( 21 γγ  should be 

transformed into the variables ),( 21 bbb ξξ=ξ , at the 
emergence point of the central ray on the acquisition 
surface, by using the jacobian: 

,|])(det[|)cos(cos 21
12

21 bbbSGGS dddd ξξααγγ ξN−=      (7) 

where Sα and Gα are the start and the emergence 

angles of the central ray at the source )( bS ξ and 

receiver )( bG ξ on the acquisition surface. The 2X2 matrix 

SGN can be expressed by: 

.1
RGP

TT
RSSG NΛHΛNN −−=                  (8) 

The RSN and RGN are non-symmetrical 2X2 matrices 
with components given by the second order mixed-
derivative of the reflection traveltime with respect to the 
source-reflection point and to the receiver-reflection point 
coordinates, respectively. The 2X2 matrix Λ depends on 
the acquisition configuration, being expressed by: 

).( GRGSRS ΓNΓNΛ +=                         (9) 

 The 2X2 matrix PH  is the well known projected Fresnel 
zone matrix (Schleicher et al., 2004), that corresponds to 
the projected first Fresnel zone on the acquisition surface, 
which coordinates satisfy the relationship: 

    .
2

|| Τ
≤δHδ P

T                         (10)  

By equation (10) we establish the limits of the projected 
Fresnel zone on the acquisition surface given by the 
maximum paraxial distance Fδδ = , beingΤ the 
relevant period of the seismic wavefield.   

The integral (4) is now rewritten as follows: 

∫∫ ×Φ== −

BD
bbSGGSbo d )(|)(det|)cos(cos),( 12 ξξNξξξU ααω

)],(exp[)( bobo Ti ξξξu ω . 

(11) 

By applying the method of simultaneous diagonalization  
to the Gaussian beam superposition integral (11), and 
assuming that for high-frequencies ω , the main 
contributions come from the vicinity of the ray passing 
through the position vector oξ  (Cěrvený, 2000) , that is 
assumed to be situated in a regular region, we obtain: 

×≈ − |)(det|]cos[cos)2(),( 12
oSGGSo ξNξU ααωπω   

)](exp[)()](det)[( 2/1
oRoooo i ξξuξMξ ωτ−

∆−Φ . 

(12) 

By equation (12) we can see that the seismic wavefield is 
asymptotically approximated by the product of quantities 
calculated during the dynamic ray tracing and specified at 
the position vector oξ . The complex valued 2X2 

symmetrical matrix )(ξM∆  is a function that can be 
defined in many ways, e.g. see (Cěrvený, 2000) and 
Popov (2002), with the conditions: }{ ∆ℑ M  is a positive 

definite matrix and 0det ≠∆M . This relevant matrix can 
be determined by second order derivatives of the 
traveltime function calculated at oξ . 

We choose for the Gaussian beam superposition integral 
a modified version of the weight found by (Cěrvený, 
2000), that is now expressed as function of the 
coordinates bb D∈ξ : 

.|)(det|)](det[cos)( 12/1 −
∆−=Φ bSGbGb ξNξMξ α  (13) 

3-D Gaussian beam modified true-amplitude 
diffraction stack migration 

For simplicity, in the next results we consider only 
horizontal plane acquisition surface, without losing of the 
geometrical generalizations.  Following Schleicher et al. 
(1993), the weight modified diffraction stack is the 
appropriate operator to obtain a true-amplitude seismic 
prestack depth migration from finite-offset data.  

Based on the definition of a stack surface, so-called 
Huygens surface, given by:  

),,(),(),( MGMSMD τττ +=ξ                  (14) 

where )(ξSS =  and )(ξGG =  are source and 

receiver points, in the migration aperture A . ),( MSτ  

and ),( MGτ denote the traveltimes from S to the 

subsurface point M , and from G to M , respectively. 

The traveltime Dτ  represents for each point M the 
diffraction stack surface along which the seismic data is 
weighted summed, being the summation mathematically 
expressed in frequency domain by (Schleicher et 
al.,1993):  

)].,(exp[),(),(
2

),( MiUMwdiMV D
A

ξξξξ ωτω
π
ωω −−= ∫∫   

(15) 

In the true-amplitude Kirchhoff prestack depth migration 
(K-PDM), by considering a high-frequency approximation 

)1( >>ω , the ),( ωMV  is given approximately by an 
asymptotic evaluation of the integral (15), being the 
reflector image built by positioning the output of the 
integral in the chosen depth point M  (Schleicher et al. 
(1993) and Bleistein (1987)).   

By means of the zero-order ray theory, Schleicher et al. 
(1993) obtained the appropriate weight 

function ),( ξMw , at the stationary point A∈*ξ , by 
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applying the stationary phase method to the diffraction 
stack integral (15). As result they received the plane wave 
reflection coefficients of the image points at the 

subsurface. In the case A∉*ξ , the asymptotic 
evaluations of (15) are contributions of the boundaries of 
the aperture, when the gradient of the phase function 
does not vanishes, being necessary to be used some 
taper function in the vicinity of the migration aperture 
border.   

Instead of the zero-order of the ray series, we consider in 
the equation (15) the seismic wavefield 

|),(|),( ωω ξUξ =U  is well represented by the 
Gaussian beam superposition integral (11), resulting in 
the new formalism: 

×−−= ∫∫ )],(exp[),(
2

),( MiMwdiMV Db
A

ξξξ ωτ
π
ωω  

.)(|)(det|)cos(cos 12∫∫ ×Φ−

BD
bbSGGSbd ξξNξ αα   

)].,(exp[)( bbo Tiu ξξξ ω   (16) 

In equation (16) we have two double integrals, the 
external has the same mean of the classic true-amplitude 
Kirchhoff prestack depth migration, i.e. a weighted stack 
along the Huygens surface in the aperture A , but now 
using the new weight function bw  for considering also 
effects of the Gaussian beam stack. It is the innermost 
operator that represents the Gaussian beam stack, i.e. 
the weighted stack of the paraxial seismic data in the 
Gaussian beam stack domain BD .   It is important to 

emphasize that the position vectors A∈ξ define points 

in the migration aperture, while the δξξ +=b  with 

Bb D∈ξ  specify points in the Gaussian beam stack 
domain. In order to fix the important integration domain 

BD we consider only Bξ coordinates that pertain to the 
domain given by relation (10), i.e. in the proposed 
Gaussian beam stack process we consider only observed 
wavefields within the projected Fresnel zone 

Fb δξξ ≤− |)(| .  The aperture A  is considered 
without taper function. 

 By using the same methodology proposed by (Cěrvený, 
2000) for calculating the Gaussian beam superposition 
integral, and using the weight function (13), the migration 
operator (16) becomes:  

×
−

≈ −∫∫ 1)]()()()()[,()(
2

),( ξξξξξξ gzgszsb
A

pvpvMwdWiMV ω
π
ωω

    








ω
π2 )]}.,([exp{)(u Mi Fo ξξ τω− [ 

(17) 

In the equation (17) the function )(ωW


is included to 
permit the source wavelet effects, and the phase 

function )(),(),( ξξξ RDF MM τττ −= is useful for 

the asymptotic analysis. The pairs ),( gs vv  and 

),( gzsz pp  are the P-wave velocities and the vertical 

components of the slowness vectors at source and 
receiver positions, respectively.  The seismic amplitude 
is described by the ray theoretical approximation: 

,)(u
s

c
o G

RCt=ξ                              (18) 

where ct RC , and SG are the total loss due to the 
transmissions, the plane-wave reflection coefficient at 
the reflection point R and the normalized complex-
valued geometrical spreading factor, respectively. 

Assuming the Hessian matrix FH of the second-order 

Taylor series expansion of Fτ  is nonsingular, i.e. 

0det ≠FH , at the critical point *ξξ = , and 

considering a high-frequency situation )1( >>ω , the  
result of the 2-D stationary phase method (Bleistein, 
1987) applied to (16) is:  

×≈
−

|det|

][*
1

),()(),(
FS

ctgsgs

G

RCppvv
b MwWMV

H
ξωω


 

],)21(
2

),(exp[2 *
FF SgniMi Hξ −−






 πωτ
ω
π (19) 

being the “Sgn” function called signature and defined by 

),()sgn()( 21 λλ SgnSgn F +=H             (20) 

with 1)sgn( ±=x , for 0>x or 0<x , and 21,λλ  the 

real nonzero eigenvalues of the matrix FH . 

In order to obtain as result the reflection coefficient we 
need the weight function: 

×





= |det|][

2
),( *

FSgsgsb GppvvMw H
π
ωξ  

]21(
2

exp[ FSgni H−
π

.            (21) 

As a corollary of the above result given by equation (21) 
the equation (19) reduces in time domain to 





≠
=

==
RM

RMtWR
tMV c





,0
),(

)0,( ,                    (22) 

For considering there is not loss energy due to 
transmissions, 1=tC , this is the output of the true-
amplitude Kirchhoff Gaussian beam prestatck depth 
migration (KGB-PSDM) of the seismic data, for a specific 
point RM = in the earth macro-model. 
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Comparison with other results 

By starting from the Kirchhoff scattering theory, Albertin 
et al. (2004), (equation 15), presented a Gaussian beam 
prestack depth migration operator, which provides as 
result a true-amplitude migration. In order to compare 
our result with the Albertin’s weight function, we rewrite 
the weight function (21) of this paper by considering that 
there is no caustic along the ray trajectories. By inserting 
the definitions of the relative geometrical spreading and 
of the Hessian matrix FH  found in Schleicher et al. 
(1993), (equations B-16 and B-22) in equation (21) we 
have: 

.
),(),(||2

),(
),(

MGASMA
Mhppvv

Mw
gsgs

grsrgs
b ττπ

ξω
ξ

∇+∇
=

(23) 

In the equation (23) ),( Mh ξ is the well-known 

Beylkin’s determinant;  the vectors sτ∇ and gτ∇ are 

the gradients of the traveltime functions of the two rays 
that start at the source and at the receiver, respectively, 
evaluated at the selected depth point M ; and sA  and 

gA are the corresponding amplitude factors along the 

two ray branches.    

By comparing the two results  (equation 23 above and 
equation 15 of Albertin’s paper) we have: 

agsb wvvw ≡ ,                             (24) 

where aw is the weight function found by Albertin and 
co-authors in their paper, for a fixed slowness. In our 
result the weight function does not depend on the 
horizontal slowness parameter, because we does not 
use the slant stack procedures, i.e. the data is 
transformed direct from time to depth.  

Examples 

The proposed migration algorithm is applied to the well-
known Marmousi data set (Versteeg, 1994). It is a 2-D 
synthetic data set for a complex structure model, based 
on increasing listric faults in the center of model, starting 
from a salt complex structure on the bottom and ending 
near the top surface.     

In the Figure 1 we have the result of our approach applied 
to the data section with offset 200 m, and for comparison  
we show in Figure 2 the result of the Kirchhoff migration 
applied  to the same data set. We can see that the three 
faults in the center of model is better imaged by our 
approach. This is also true for the reflectors on the right of 
the most right fault. It is also observed that our approach 
is more efficient for imaging reservoir structures on the 
bottom part of the model. 

In order to test the efficiency of the proposed true 
amplitude Kirchhoff Gaussian beam migration, we apply it 
to a set of synthetic seismic data, corresponding to a 
constant velocity layer over a half-space separated by a 

smooth curved synclinal interface.  In Figure 3 we have 
the values of reflection coefficients obtained by our 
approach (green) and by the true-amplitude Kirchhoff 
prestack depth migration (K-PSDM). In Figures 4 and 5 
we have the migrated seismic data obtained by the KGB-
PSDM and K-PSDM, respectively. Both results, in this 
case, presented a good performance and a light 
difference in the bottom part of synclinal. 

Conclusions 

We proposed a new true-amplitude migration algorithm 
that is a modification of the traditional Kirchhoff prestack 
depth migration. For that we use a beam stack before 
migration based on a Gaussian beam superposition 
integral. The result of our endeavor is a more stable and 
robust true amplitude prestack depth migration operator, 
by using weights functions obtained from paraxial ray 
theory, by attenuating the beam stack border effects. It 
was successful applied to two set of synthetic seismic 
data: 1) Prestack depth imaging of the Marmousi data set; 
and 2) an example of estimation of plane wave reflection 
coefficients in a synclinal model.  
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Figure 1:Kirchhoff Gaussian beam prestack depth 
migration (KGB-PSDM) applied to Marmousi data set with 
common-offset 200 m. AGC=100%. 

 
 

Figure 2:Kirchhoff prestack depth migration (K-PSDM) 
applied to Marmousi data set with common-offset 200 m. 
AGC=100%. 

 

 

 

Figure 3: Plane wave reflection coefficients of synclinal 
model by using the KGB-PSDM (green) and K-PSDM 
(blue). 

 

 
Figure 4:  Prestack depth migration of the synclinal 
model seismic data, obtained by the KGB-PSDM. 

 

 
Figure 5: Prestack depth migration of the synclinal model 
seismic data, obtained by the K-PSDM. 
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