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Abstract

Many migration methods are based on paraxial ap-
proximations to the wave equation. These approx-
imations are used to describe the wave propaga-
tion in a preferred direction. We apply the idea of
a directed propagation to the so-called anisotropic
acoustic wave equation. We derive paraxial approx-
imations for this equation, the first ones being gen-
eralizations of the 15◦ and 45◦ approximations to the
isotropic acoustic wave equation. Moreover, we de-
rive higher-order approximations using Padé approx-
imations. A set of numerical experiments demon-
strates that our paraxial equations provide reason-
able approximations to the solution of the full equa-
tion. Moreover, their computational execution is
cheaper than using a direct implementation.

Introduction

Seismic imaging uses the information of acoustic or
elastic waves propagating in the earth to construct an
image of the subsurface structure. For this purpose,
a seismic migration is needed that positions the re-
flection events in time or depth. To apply migration, it
is necessary to solve some kind of wave equation.

When using the full elastic or acoustic wave equation,
as is the case in reverse time migration, backscat-
tered waves in unwanted directions tend to create ar-
tifacts and obfuscate the desired image. For this rea-
son, many migration methods are based on paraxial
approximations to the wave equation.

Paraxial wave equation approximations are used to
describe wave propagation in a preferred direction
(Bamberger et al., 1988a). Paraxial approximations
have many applications as to describe ocean acous-
tics (Jensen et al., 2000), eletromagnetic waves
(Bérenger, 1994), and seismic waves. In seis-
mology, paraxial wave-equation approximations have
been applied both to scalar and elastic wave prop-
agation (Kern, 1992; Bunks, 1993; Jenner et al.,
1997). Numerical computations based on wave ap-
proximations are a part of geophysical data process-

ing. The most common approximations are parabolic
(or 15◦) approximation (Bamberger et al., 1988b)
and 45◦-approximation (Claerbout, 1976). Since
paraxial wave-equation approximations are based on
pseudo-differential operators, they tend to have prob-
lems at the boundary between transient and evanes-
cent waves. Recent advances using the complex
Padé approximation of the involved square root have
shown how to minimize these problems (Amazonas
et al., 2007).

Up to now, these paraxial approximations have been
applied almost exclusively to isotropic wave equa-
tions. However, considering anisotropy in seis-
mic imaging is becoming more and more impor-
tant. Many approximations have been made to de-
scribe wave propagation in anisotropic media, for
example, using weak elastic anisotropy (Thomsen,
1986) and using ellipical approximations (Helbig,
1983; Dellinger and Muir, 1988). (Alkhalifah, 1998)
derived an acoustic approximation for the disper-
sion relation for P waves in anisotropic media. Us-
ing this approximation, Alkhalifah (2000) derived an
anisotropic acoustic wave equation for vertical trans-
versely isotropic (VTI) media. While acoustic media
can at most exhibit elliptical anisotropy, the equation
derived by Alkhalifah (2000) is a good approximation
for P waves in VTI media.

In this paper, we combine the idea of a directed prop-
agation with the anisotropic acoustic wave equation
of Alkhalifah (2000). We derive two paraxial approx-
imations for this equation. The first set of approxi-
mations are generalizations of the 15◦ and 45◦ ap-
proximations to the isotropic acoustic wave equation.
Moreover, we propose higher-order paraxial approxi-
mations using the theory of Padé approximations.

The anisotropic acoustic wave equation

By setting the vertical shear wave velocity to zero,
Alkhalifah (1998) derived a simple equation that re-
lates the vertical slowness, pz, to the horizontal one,

pr =
√

p2
x + p2

y, in VTI media. This acoustic approx-

imation to the dispersion relation in VTI media yields
accurate kinematic approximations to the actual elas-
tic model (Alkhalifah, 1996, 1998).

The migration dispersion relation in 3-D VTI media is

p2
z =

v2

v2
v

(

1

v2
−

p2
x + p2

y

1 − 2v2η(p2
x + p2

y)

)

, (1)
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where v and vv are the NMO and vertical velocities,
respectively, and η is the anellipticity parameter, all
assumed to be constant. In terms of the components
of the wavenumber vector k = ωp, equation (1) can
be written as

k2
z =

v2

v2
v

(

ω2

v2
−

ω2 (k2
x + k2

y)

ω2 − 2v2η(k2
x + k2

y)

)

. (2)

Interpreting kx, ky, kz, and ω as Fourier-domain sym-
bols of the respective partial derivatives, Alkhalifah
(2000) derived the anisotropic acoustic wave equa-
tion,

∂4u

∂t4
− (1 + 2η)v2

(

∂4u

∂x2∂t2
+

∂4u

∂y2∂t2

)

(3)

= v2
v

∂4u

∂z2∂t2
− 2ηv2v2

v

(

∂4u

∂x2∂z2
+

∂4u

∂y2∂z2

)

.

Note that for isotropic media, where vv = v and η = 0,
equation (3) reduces to the second time derivative of
the isotropic acoustic wave equation.

One-way wave propagation

To describe downgoing waves, we have to take the
square root of equation (2) according to

kz =
ω

vv

(

1 −
v2 k2

r

ω2 − 2v2ηk2
r

)1/2

, (4)

where k2
r = k2

x + k2
y. In analogy to the isotropic case

(Bamberger et al., 1988a), the symbol of the asso-
ciated differential equation can thus be represented
as

L = vv kz − ω
(

1 − X2
)1/2

= 0 , (5)

where we have introduced the notation

X2 =
v2 k2

r

ω2 − 2v2ηk2
r

. (6)

We observe from equation (5) that the symbol has
the same structure as in the isotropic case.

Paraxial approximations

Based on the symbol (5), we can derive paraxial ap-
proximations for the anisotropic acoustic wave equa-
tion (3). For this purpose, we follow the methodology
for the isotropic case (Bamberger et al., 1988a,b).

Parabolic or 15◦ approximation

For small values of X we can use the first-order Tay-
lor series to approximate (1 − X2)1/2 as

(

1 − X2
)1/2

= 1 −
1

2
X2 + O(X4) . (7)

In this approximation, the symbol is

L = vv kz − ω

(

1 −
1

2

v2 k2
r

ω2 − 2v2ηk2
r

)

= 0 . (8)

Multiplying the above equation by ω and distributing
terms, we find

vv kzω
3 − 2vvv2ηkzωk2

r

−ω4 + 2v2ηω2k2
r +

1

2
ω2v2 k2

r = 0 , (9)

which represents the differential equation

∂4u

∂t4
−

(

2v2η +
1

2
v2

)

∂4u

∂r2∂t2

+vv
∂4u

∂z∂t3
+ 2vvv2η

∂4u

∂z∂t∂r2
= 0 . (10)

Here, ∂2/∂r2 = ∂2/∂x2 + ∂2/∂y2. This equation is a
generalization of the parabolic (or 15◦) isotropic wave
equation, to which it reduces when vv = v and η = 0.

45◦ approximation

Equation (10) is a good approximation for small X,
i.e., propagation close to the vertical direction. To
derive a more accurate equation that describes wave
propagation for larger propagation angles, we use a
first Padé approximation.

(

1 − X2
)1/2

=
1 − 3

4
X2

1 − 1

4
X2

+ O(X6), (11)

In this approximation, the symbol is

L = vv kz − ω





1 − 3

4

v2 k2

r

ω2
−2v2ηk2

r

1 − 1

4

v2 k2
r

ω2
−2v2ηk2

r



 = 0 . (12)

After distribution of terms, this leads to

vv kzω
2 − 2v2vvηkzk

2
r (13)

−
1

4
v2 k2

rvv kz − ω3 + 2v2ηk2
rω +

3

4
v2 k2

rω = 0 ,

which represents the differential equation

∂3u

∂t3
−

(

2v2 η vv +
1

4
vvv

2

)

∂3u

∂z∂r2

+vv
∂3u

∂z∂t2
−

(

2v2η +
3

4
v2

)

∂3u

∂t∂r2
= 0. (14)

This equation is a generalization of the 45◦ isotropic
wave equation, to which it reduces when vv = v and
η = 0.

Higher-order paraxial approximations

Equations (10) and (14) are based on small-order ap-
proximations, describing wave propagation correctly
only in a certain range around the vertical axis. If
we want to describe near horizontal propagation cor-
rectly, we need higher-order approximations. How-
ever, using real approximations we run into problems
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with evanescent waves, which can be avoided using
complex Padé approximations.

For isotropic media, Bamberger et al. (1988a) pro-
posed the use of higher-order complex Padé approx-
imations to expand the symbol in a more accurate
form. Note that, the anisotropic symbol [equation
(5)] has the same form as the isotropic one (see
Bamberger et al., 1988a). Therefore, the anisotropic
higher-order approximation has the same structure.

The real Padé approximation of equation (5) has the
form (Bamberger et al., 1988a)

L = vv kz − ωfn

(

X2
)

, (15)

where

fn

(

X2
)

= 1 −

n
∑

k=1

βkX2

1 − γkX2
, (16)

is the Padé approximation of the square-root in equa-
tion (5). The Padé coefficents are given by















βk =
2

2n + 1
sin2

(

kπ

2n + 1

)

,

γk = cos2
(

kπ

2n + 1

)

.
(17)

After multiplication with the Fourier transform of the
wavefield, û, equation (15) becomes

vv kzû − ωû + ω

n
∑

k=1

βkX2

1 − γkX2
û = 0. (18)

Defining, for 1 ≤ k ≤ n,

ŷk =
βkX2

1 − γkX2
û, 1 ≤ k ≤ n, (19)

we can recast equation (18) into the form

vv kzû − ωû + ω

n
∑

k=1

ŷk = 0. (20)

Calculating the inverse Fourier transform of equa-
tions (19) and (20), we have















∂u

∂t
+ vv

∂u

∂z
−

n
∑

k=1

∂yk

∂t
= 0,

∂2yk

∂t2
− (2η + γk)v2 ∂yk

∂x2
= βkv2 ∂2u

∂x2
,

(21)

where vv and v are the vertical and NMO velocities in
the anisotropic medim, respectively. In the isotropic
case, with vv = v and η = 0, system (21) reduces to















∂u

∂t
+ v

∂u

∂z
−

n
∑

k=1

∂yk

∂t
= 0

∂2yk

∂t2
− γkv2 ∂yk

∂x2
= βkv2 ∂2u

∂x2
.

(22)

Thus, for aproximations with n terms in the Padé se-
ries, as much in isotropic case as in anisotropic case,
we have to solve n + 1 equations, these being one
transport equation in the z direction and n equations
in the x direction (Bamberger et al., 1988a).

The real Padé approximation (17) has a problem
when the argument of the square-root is negative,
i.e., when X2 > 1. In other words, this approximation
cannot handle evanescent modes correctly. To over-
come this limitations, Millinazzo et al. (1997) propose
a complex representation of the Padé approximation
using a rotation of the branch cut. The complex Padé
approximation is

√

1 − X2 ≈ C0 +

n
∑

k=1

BkX2

1 + ΓkX2
, (23)

with coefficients


































C0 = eiα/2

[

1 −

n
∑

k=1

βk(e−iα + 1)

[1 − γk(e−iα + 1)]

]

,

Bk =
βke−iα/2

[1 − γk(e−iα + 1)]2
,

Γk =
γke−iα

1 − γk(e−iα + 1)
,

(24)

where βk and γk are defined in equations (17). The
values Bk and Γk are the complex Padé coefficients,
and α is the rotation angle of the branch cut of the
square root in the complex plane.

Using approximation (23), equation (15) takes the
form

L = vv kz − ω

(

C0 −

n
∑

k=1

BkX2

1 − ΓkX2

)

. (25)

Note that when α = 0, this expression is identical to
equation (15). In analogy to equation (19), we intro-
duce a new ŷk where the complex Padé coefficients
Bk and Γk replace the real ones βk and γk. This leads
to the anisotropic system
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∂u

∂t
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−

n
∑
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∂yk

∂t
= 0

∂2yk

∂t2
− (2η + Γk)v2 ∂yk

∂x2
= Bkv2 ∂2u
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,

(26)

which reduces in the isotropic case to















C0

∂u

∂t
+ v

∂u

∂z
−

n
∑

k=1

∂yk

∂t
= 0

∂2yk

∂t2
− Γkv2 ∂yk

∂x2
= Bkv2 ∂2u

∂x2
.

(27)

Like in the real case, we have to solve one trans-
port equation in the z direction and n equations in
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x direction. Note that systems (26) and (27) have
the same structure as systems (21) and (22). There-
fore, the computational effort to solve these systems
is equivalent. It is to be stressed that systems (26)
and (27) are more accurate, because they provide
an improved handling of the evanescent modes.

Implementation

For the numerical solution of the anisotropic acous-
tic wave equation, we consider the pressure field de-
fined by

P =
∂2u

∂t2
. (28)

Using this definition in equation (3) we have

∂2P

∂t2
= (1 + 2η)v2 ∂2P

∂r2
+ v2

v

∂2P

∂z2
− 2ηv2v2

v

∂4u

∂r2∂z2
. (29)

Equations (28) and (29) represent a system that can
be solved in 2D using the following algorithm (Alkhal-
ifah, 2000)

ui+1 = 2ui − ui−1 + ∆t2P i

P i+1 = 2P i − P i−1 + ∆t2
(

∂2P

∂t2

)i

(30)

at each point (r, z).

To solve the complex Padé paraxial approxima-
tions for the anisotropic acoustic wave-equation, we
choose a set of indices m, n and l in order to es-
tablish a finite-difference scheme with uniform grid
spacings ∆r, ∆z and ∆t, i.e., rm = rmin + m∆r,
zj = zmin + j∆z and tl = tmin + l∆t. Consequently,
for a fixed k, we denote u(xm, k, zj , tl) = ul

m,j . In
our examples, xmin, zmin, tmin are zero. A possible
finite-difference scheme for system (26) can then be
represented as (Strikwerda, 1989)

ul+1

m,j = ul
m,j +

n
∑

k=1

(yl+1,k
m,j − yl,k

m,j) − σ(ul
m,j+1 − ul

m,j)

yl+1,k
m,j = 2yl,k

m,j − yl−1,k
m,j + αk(yl,k

m+1,j − 2yl,k
m,j + yl,k

m−1,j)

+δk(ul
m+1,j − 2ul

m,j + ul
m−1,j) , (31)

where


























σ =
vv∆t

C0∆z
,

αk =
(2η + Γk)v2∆t2

∆x2
,

δk =
Bkv2∆t2

∆x2
.

(32)

Numerical examples

In this section, we show some numerical examples
of our paraxial approximations and compare them to
the results of the solution of system (30) for the full
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Figure 1: Wavefield at t = 0.40 s calculated using
a homogeneous velocity model with v = 3500 km/s.
(a) Paraxial approximation; (b) full equation.

acoustic anisotropic wave equation. In all examples
below, the solution of system (30) required a much
smaller ∆t than that of system (31), leading to about
10 times higher computation time.

We started by solving the isotropic equation system
(27), i.e., η = 0 and vv = v in system (31). Figure 1
compares a snapshot of the wavefield in a homoge-
neous model with v = 3500 m/s to the corresponding
solution of the full equation, system (30). The source
was positioned at 300 m depth. We recognize some
artifacts in the top part of the wavefield, which was al-
ready reported by Bamberger et al. (1988a). Also, we
observe that the shape of the wavefront is slightly dis-
torted and that the paraxial approximation is slightly
more dispersive than the full equation.

In our second isotropic test, we used the a smoothed
version of the Marmousi velocity model. Figure 2
compares the results for a snapshot at t = 0.4 s.
The solution of the full equation in Figure 2b contains
upgoing waves which are not present, of course, in
Figure 2a. The observations about artifacts in the
upper part, wavefront shape and dispersion remain
the same as in the homogeneous example.

Next, we tested the anisotropic solution. At first, we
solved equation (31) for a homogeneous VTI medium
with anisotropy parameters ǫ = 0.21, δ = 0.05, i.e.,
η ≈ 0.15, and vv = 3500 km/s. Figure 3 shows the
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Figure 2: Wavefield in t = 0.40 s calculated using the
Marmousoft velocity model. (a) Paraxial approxima-
tion; (b) full equation.

results for a snapshot at t = 0.4 s. In addition to
the observations about wavefront shape, dispersions,
and artifacts from the isotropic case, we also see an
enhanced pseudo-S wave artifact (Alkhalifah, 2000),
but reduced numerical noise when compared to the
solution of the full equation.

To reduce the pseudo-S wave artifact, we followed
the recipe of Alkhalifah (2000) to place the source in
an isotropic region. For this purpose, we repeated
the last experiment with a homogeneous, isotropic
layer between 240 m and 330 m depth. Figure 4
shows the resulting snapshots. While the pseudo-
S wave artifact has been reduced in amplitude, it is
still visible in the paraxial approximation (Figure 4a).

Our last numerical example compares the results for
a model with three horizontal VTI layers with param-
eters ǫ1 = 0.21, δ1 = 0.16, vv1 = 2200 m/s, ǫ2 = 0.12,
δ2 = 0.12, vv2 = 2800 m/s, ǫ3 = 0.02, δ3 = 0.02,
vv3 = 3500 m/s. The source was positioned at 180 m
depth. The main features of the snapshots in Figure 5
are the same as observed in the previous examples.

Conclusions

Paraxial approximations to the wave equation are of-
ten used when waves propagate in directions close
to a preferred direction. In particular, such approxi-
mations are used to develop migration methods like
those of Collino et al. (1995) and Jenner et al. (1997).
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Figure 3: Wavefield in t = 0.40 s calculated using
ǫ = 0.21, δ = 0.05 and vv = 3500 km/s. (a) Paraxial
approximation; (b) full equation.

In this paper, we have derived paraxial approxima-
tions for the anisotropic acoustic wave equation of
Alkhalifah (2000). We have presented equivalents to
the 15◦ and 45◦ wave equations and a higher-order
paraxial approximation using Padé approximation.

Our higher-order approximations lead to an equa-
tion system system that is equivalent to third-order
partial differential equations. Therefore, its computa-
tional execution is cheaper than using a direct imple-
mentation of Alkhalifah’s (2000) equation. We have
demonstrated with a set of numerical experiments
that our paraxial equations provide reasonable ap-
proximations to the solution of Alkhalifah’s equation.
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