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Abstract

Techniques that use Common Mid-Point (CMP) data, such
as NMO correction, stacking and velocity analysis are the
core of seismic processing. They are combination of
procedures that relies on the physics, signal processing
and basic laws of statistcs. In general they all use
a underlying velocity model, which gives a traveltime
expression, and numerical schemes to acomplish their
goals. For instance the construction of coherence panels
in spectral velocity domain are traditionally made by
summing up amplitudes along auxiliary hyperbolae, which
are parameterized by zero-offset time and velocity. In this
work we insvestigate how some of these methods could
benefit of smearing procedures instead of stacking ones.

Introduction

CMP-based techniques, such as NMO correction, stacking
and velocity analysis, are considered the core of seismic
processing, mainly because their products will feed more
advanced and critical procedures, such as migration and
inversion. As a matter of fact, errors during the early stages of
seismic processing often accumulate, generating mispositioned
reflectors and bad geologic interpretation.

All these techniques have in common that, in general, they
are all theoretically based on velocity model assumptions,
associated to a traveltime expression, which is obtained from
a combination of procedures that relies on the physics of waves
and geometrical optics. The design of the actual technique
from the theoretical model employs numerical schemes that
are based on signal processing, basic laws of statistics and
numerical analysis. For instance, the simplest form of velocity
analysis is based on a layered geological model, in which the
layers are homogeneous and separated by flat interfaces. The
associated traveltime expression is the hyperbolic traveltime
formula, which is dependent of the offset and is parameterized
by RMS velocity and zero-offset traveltime, both obtained from
the model. Also the numerical scheme is based on the
semblance formula, which is, roughly speaking, a quotient
between the squared sum of amplitudes and sum of squared
amplitudes collected along hyperbolic curves.

Although velocity analysis using CMP sections is already a
well established procedure, it has been studied thoroughly
since its formal introduction by Taner and Koehler (1969).
Historically, there is a number of modifications and extensions
to the original idea, all of them improving or changing
the geologic model and/or the coherence measurements.

Concerning improvements related to the geologic model or
traveltime expression there is, for instance, the inclusion
of anisotropy factors (Alkhalifah and Tsvankin, 1996), the
geometrical correction of traveltime curves (de Bazelaire, 1988)
or considering non hyperbolic curves (Abbad et al., 2009). On
the other hand, concerning the improvements that address
coherence measurements, we can cite, for example, the
improvement of statistical measurements of coherence (Neidell
and Taner, 1971) and the introduction of differential semblance
(Li and Symes, 2007).

Great part of imaging process has its theoretical basis on
integrals computed along auxiliary curves, such as Kirchhoff
migration (Hubral et al., 1996; Tygel et al., 1996) or tau-p
transforms (Clayton and McMechan, 1981). Actually these
theoretical integrals are the reason why stacking amplitudes
along auxiliary curves gives goods results. Also, we can
understand stacking amplitudes as the direct translation of
theoretical formulas to practical problems, where the integral
operation changes into discrete summation.

The usual methods of velocity analysis, as well as its variants
and extensions, are all designed under the same principle,
which we generically refer to stacking and which it can be
divided in three parts:

Location Consider a traveltime function which is geometrically
equivalent to a line (or surface);

Measurement Design some statistical measurement that
gives some desired property, such as coherency;

Stacking On the intersection of Location and the data section,
apply the Measurement.

Therefore, by the term “stacking”, we mean to perform
numerical computation using the data collected along a
curve defined by the traveltime expression. For instance
the construction of coherence panels in spectral velocity
(SV) domain are usually made by properly summing up
squared amplitudes along auxiliary hyperbolae, which are
parameterized by t0 and v.

In this work we propose a change of paradigm, which is to
perform velocity analysis on coeherence panel constructed
by smearing instead of stacking. The smearing paradigm is
not new, however, for it can be seen as a good alternative
to stacking data on auxiliary curves, the way is performed
in Kirchhoff migration. In this case, the smearing paradigm
means that the amplitudes of seismic traces are smeared along
isochrons in the migrated image (Santos et al., 2000). Actually,
Kirchhoff migration by smearing can be seem as memory
saving way to perform migration on massively pre-stack data,
because each trace can be used only once, one independent of
another, being a potential for parallel algorithms.

In the proposed method, we use the conventional geological
model and traveltime expression, i.e., we consider a RMS
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velocity model and the hyperbolic traveltime expression. Also,
as coherence measurement we choose the semblance as a
starting formula. The main difference is that the CMP data is no
longer summed along hyperbola to produce a semblance value
on a single point of spectral velocity panel, but the amplitude of
each sample of CMP section is spread along proper curves that
lie on spectral velocity panel.

Family of hyperbola

In order to build the smearing curve corresponding to a single
point in CMP section, we have to consider a family of hyperbola
which passes on this point. The well-known basic formula of
hyperbolic traveltime is

t2 = t20 + (x/v)2 , (1)

where t is the reflection time, t0 is the zero-offset time, x is the
offset and v is the medium velocity. The above formula tells us
that for each (v, t0) pair in SV domain there is a hyperbolae in
CMP domain and vice-versa.

To develop our approach, we seek a family of hyperbola which
intersection is at a given point (xi, ti). In this way, we simply
require that the parameters t0 and v must satisfy

t2i = t20 + (xi/v)2 . (2)

Isolating t0 we obtain a relationship

t20 = t2i − (xi/v)2 , (3)

where we require that v ≥ xi/ti. Therefore inserting (3) in (1),
we obtain a general equation

t2 = t2i − (xi/v)2 + (x/v)2 (4)

that represents a family of hyperbola that intersect at (xi, ti), in
which v is the family parameter. Figure 1(a) shows a family of
hyperbola intersecting one point.

Each hyperbolae of the family of intersecting hyperbola can be
represented as a point (v, t0) at the SV domain. Therefore, the
family of of hyperbola described by (4) can be represented by a
curve at the SV domain given by

t0 = f(v) =
q

t2i − (xi/v)2 , (5)

where v must be greater than xi/ti. Figure 1(b) shows the line
that represents the family of hyperbola depicted in Figure 1(a).
Notice that each colored hyperbolae depicted in Figure 1(a) has
a one-to-one correspondence to a point, depicted as circle of
the same color, depicted in Figure 1(b).

Therefore, for each point (xi, ti) in CMP domain, we can
establish an one-to-one relationship to a curve Γi in SV domain,
i.e.,

(xi, ti)←→ Γi ,

where Γi is defined as

Γi =
n

(v, t0) | t0(v) =
q

t2i − (xi/v)2, v ≥ xi/ti

o
,

(6)
in SV domain.

Figure 1: A family of hyperbola depicted on (a) intersect at one
given point in CMP domain. Each hyperbolae of CMP domain
depicted on (a) can be associated to point on SV domain (b),
represented by a circle with the same color.

Figure 2: (a): Reflection event hyperbolae on CMP domain. (b):
Smearing curves on SV domain. Each hyperbolae on the right
is represented by a circle on CMP domain.

Coherency panel by smearing

It is proposed the construction of a semblance-like coherence
panel by smearing the amplitude and the squared amplitude
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at the point (xi, ti) in CMP domain along the curve Γi in SV
domain defined by (6).

As seen in Figure 2, each reflection event on CMP is related
with a set of smearing curves that intersect on a point on SV
domain which describes the event RMS velocity and ZO time.

In other to construct the coherence panel, the user must specify
the velocity range for the SV domain; this is called trial velocity.

First of all, a panel is constructed by smearing the amplitude
along the related smearing curves (Smeared Amplitude Panel
– A panel). The amplitude is smeared in order to produce a
constant amplitude density along the smearing curve length.
The amplitude density is the relation between CMP point
amplitude and the related curve length. The curve length is
calculated from v ≥ xi/ti to maximum trial velocity. At the
process end, each point in the A panel must be squared.

At same time, another panel is constructed by smearing
squared amplitude (Smeared Squared Amplitude Panel –
S panel). In the same way before, a constant squared-
amplitude density along the smearing curve is sought.
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Figure 3: (a): Points in CMP domain; point 3 is in the area that
produces no smearing curves. (b): Smearing curves on SV
domain.

In both panels, the restriction in equation (6) – v ≥ xi/ti –
together with the maximum trial velocity, defines an area in CMP
domain where the amplitude is not smeared. See Figure 3.

For deeper reflectors and higher RMS layer velocity a minimum
offset is required in order to clearly define the intersection point
in SV domain – called, from now on, spots. Figure 4 shows
the reason. If the offset is not long enough, the coherence spot
at the A panel produced by the summation of the amplitudes
is not strong. At the same time, where there should not be a
significant value at the panel due to non-coherent summation,
there it is. To prevent this, the relation below must be satisfied:

xmin ∼ vhth , (7)

where vh and th are the higher expected RMS velocity and ZO
time, respectively.

The Semblance-like Coherence Panel – C panel – is obtained
by calculating the ratio between each point in the A panel and
its corresponded at the S panel. Each ratio gives rise to a point
in the C panel.

Syntetic data example

In order to evaluate the proposed methodology, we present an
example with synthetic data. They were generated analytically
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Figure 4: (a) and (b): reflection event hyperbolae on CMP
domain and smearing curves on SV domain. (c) and (d): same
event, with broader offset. Each hyperbolae on the right is
represented by a circle on CMP domain.

by using the traveltime given by (1) with Ricker wavelet of 50 ms
and unitary amplitude.

Horizontaly multi-layered media with noise

The used model was a horizontally multi-layered media with
four flat reflectors. The layer velocities are, respectively, in
downward direction, v1 = 1 m/ms, v2 = 1.5 m/ms, v3 = 1.7 m/ms
e v4 = 2.3 m/ms (see Figure 5). Uniform random noise was
added to seismic section (see Figure 6). The signal-to-noise
ratio (SNR) is 0.104 dB1.
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Figure 5: Multi-layered media CMP section with no noise.
Clearly four hyperbolic events can be observed.

1SNR = 10 log10

„P
k u2(k)P
k n2(k)

«
, where u is the signal and n the

noise.
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Figure 6: Multi-layered media CMP section, noise added.

Figure 7: Coherence panel with spots showing the expected
RMS velocities and ZO times.

Figure 7 shows the semblace-like coherence panel produced
by the proposed method. In this panel the coordinated of local
maxima give the expected RMS velocities and ZO times (see
Table 1).

Table 1: Expected and obtained ZO times and RMS velocity
Layers ZO time[s] RMS velocity[m/ms]

expected obtained expected obtained
1 100.0 100 1.000 1.000

1,2 140.0 138 1.165 1.160
1,2,3 257.7 259 1.434 1.440

1,2,3,4 344.6 345 1.695 1.700

Summary and Conclusions

This work proposes a velocity analysis by means of a
semblance-like coherence panel constructed by smearing
amplitudes of a CMP section. This construction is made by
acummulating amplitudes along curves on the spectal velocity
domain that can be interpreted as the impulse response of a
point on CMP section. The example shows that coherence

panel generated by the proposed method produces very
accurate RMS velocities, indicating that it can replace the
original summation method.
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