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Abstract
The objective of extracting the spatial location of a reflec-
tor, and its local angle-dependent reflection coefficient, from
seismic data, depends on the ability to identify and to re-
move the effect on primary amplitudes of propagation down
to and back from the reflector. All conventional methods
that seek to correct for such transmission loss require esti-
mates of the properties of the overburden. In this paper we
propose a fundamentally new approach that will in princi-
ple permit correction of primaries for such transmission loss
without requiring overburden properties as input. The ap-
proach is based on the amplitude of the first term of the
inverse scattering series internal multiple attenuation algo-
rithm, which predicts the correct phase and approximate
amplitude of first order internal multiples. The amplitude is
estimated to within a factor determined by plane wave trans-
mission loss down to and across the reflector producing the
event’s shallowest downward reflection. Hence, the ampli-
tude difference between a given predicted and actual mul-
tiple, both of which are directly available from the data and
the algorithm output, in principle contain all necessary infor-
mation to correct specific primary reflections for their over-
burden transmission losses. We identify absorptive overbur-
dens/media as requiring particular focus, so as a first step,
previous amplitude analysis of the internal multiple attenua-
tion algorithm is here extended to include stratified absorp-
tive media. Using this newly derived relationship between
predicted and actual internal multiples, and existing results
for acoustic/elastic media, correction operators, to be ap-
plied to specific, isolated primaries in both types of media,
are then computed using combinations of multiples and their
respective predictions. We illustrate the approach on syn-
thetic data for the absorptive case with three Earth models
with different Q profiles. Further research into the ampli-
tudes of the plane wave internal multiple predictions in 2D
and 3D media as a likely pre-requisite to field data applica-
tion of this concept-level algorithm.
Introduction
A primary is a recorded seismic event whose history can be
roughly subdivided into: propagation down from the source

through the overburden, reflection at a target, and propaga-
tion back through the overburden up to the receiver:

Primary = [TDown] × [Reflection] × [TUp], (1)

where TDown and TUp stand for transmission down and
up, respectively. In exploration seismology primaries are
the main seismic source of subsurface information, and are
used for structural mapping, parameter estimation, and, ul-
timately, petroleum delineation at the target. Techniques
of migration-inversion (Weglein and Stolt, 1999) accomplish
these goals by first generating maps of seismic reflectors
at depth, typically positioning at these reflectors reflection
coefficients as functions of angle, and, second, by using
this behavior to determine local contrasts in medium prop-
erties. Therefore, an important part of migration-inversion
is the processing of primary amplitudes, which are them-
selves essentially described by equation (1), to remove the
effects of transmission down to and back from the point of
reflection, “laying bare” the reflection coefficient information
so that it may be used in parameter estimation. This re-
moval as it is conventionally accomplished requires an ac-
curate estimate of all medium properties above the target.
In this study we describe an approach for the correction of
primary amplitudes for transmission through various types
of overburden, that avoids the requirement for prior char-
acterization of overburden properties, thus aiding otherwise
conventional migration-inversion methods. We seek a cor-
rective operator, COp, derivable directly from the data, of
the form

COp = ([TDown] × [TUp])−1, (2)

which, when applied to a particular primary as modeled by
equation (1), provides the reflection coefficient information,
CorP, required by the inversion component of migration-
inversion:

CorP = Primary × C.Operator = [Reflection]. (3)

Our approach derives from the inverse scattering series in-
ternal multiple attenuation algorithm (Araujo et al., 1994;
Araújo, 1994; Weglein et al., 1997, 2003). The order of an
internal multiple refers to the number of downward reflec-
tions experienced by the event anywhere in the subsurface
(Weglein et al., 2003); e.g., first order internal multiples have
one downward reflection, etc. The inverse scattering se-
ries has the ability to eliminate all multiples without a priori
subsurface information (Weglein et al., 2003). The inverse
series algorithm for free-surface multiples (Carvalho, 1992)
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eliminates a single order of free-surface multiples with a sin-
gle algorithm term (of the same order). In contrast, each
order of internal multiples requires a series for its removal.
For instance, the internal multiple attenuation algorithm is
a series, whose first term predicts the correct time and ap-
proximate amplitude of all first order internal multiples, and
prepares the higher order multiples for attenuation by higher
order terms in the algorithm. Research has additionally pro-
gressed towards an elimination algorithm. Ramirez and We-
glein (2005a); Ramirez (2007) have provided a closed-form
elimination algorithm for a subset of first-order internal mul-
tiples, which eliminates internal multiples generated at the
shallowest reflector in the earth and improves the attenu-
ation of internal multiples generated at deeper reflectors.
Further aspects of the internal multiple attenuation algo-
rithm have been reported in the literature by Carvalho et
al. (1991); Matson (1997); Weglein et al. (1997); Weglein
and Matson (1998); Kaplan et al. (2005); Nita and Weglein
(2005); Weglein and Dragoset (2005). Our proposed pri-
mary correction approach derives from the properties of the
first term of the internal multiple attenuation algorithm. The
precise difference between the actual amplitude of an inter-
nal multiple and the amplitude predicted by the first term of
the algorithm, for plane wave data in an acoustic medium
(Weglein et al., 2003; Nita and Weglein, 2005), is a direct
expression of plane wave transmission losses down to and
across the reflector where the multiple’s shallowest down-
ward reflection has taken place (Weglein and Matson, 1998;
Weglein et al., 2003; Ramirez and Weglein, 2005b,a). This
means that the amplitude difference between a given mul-
tiple and its prediction, both of which are directly available
from the data and the algorithm output, in principle con-
tains all the information necessary to correct specific pri-
mary reflections for their overburden transmission losses1.
The main goal of this paper is to use this information to con-
struct a corrective operator essentially of the form described
in equation (2). In doing this early-stage research, we as-
sume that wavelet estimation and deconvolution, instrument
response analysis, and de-ghosting have already been car-
ried out, and that the requisite data events have been identi-
fied and can be separately studied. There are additional po-
tential benefits associated with this idea: first, the informa-
tion is a byproduct of an existing part of the wave-theoretic
processing flow (the de-multiple phase) and comes at no ad-
ditional cost. Second, this information becomes available at
a convenient point during processing, just prior to its likely
use in primary processing/inversion. Third, it is consistent
with wave-theoretic processing. Fourth, it is not restricted
to a production setting, but is also applicable in reconnais-
sance and exploration settings. We have in particular found
that the design of the operator depends on whether or not
the overburden is absorptive.

Amplitudes predicted by the multiple attenuation
algorithm

The first term in the internal multiple attenuation algorithm
acts non-linearly on reflection seismic data to calculate the
exact phase and approximate amplitude of all orders of in-

ternal multiples:
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wavenumbers conjugate to receiver and source coordi-
nates (xg, xs), respectivelly, and ǫ is a small positive quan-
tity. The input for the internal multiple attenuation algo-
rithm is b1, which is created from the pre-stack reflection
seismic data. It is constructed as follows: the surface
recorded data, deghosted and without free surface mul-
tiples, D(xg, xs, t), is Fourier transformed over all vari-
ables, to produce D(kg , ks, ω). A change of variables is
made, to D(kg , ks, qg + qs), after which b1 is defined as
b1(kg, ks, qg + qs) = D(kg, ks, qg + qs)(2iqs); b1 is then
inverse Fourier transformed over qg + qs to pseudo-depth.
The result, b1(kg, ks, z), is used as input in equation (4), and
the output, b3IM , is the predicted internal multiple data set,
produced without knowledge of Earth material properties
or structure and it accommodating all Earth model types
that satisfy the convolutional model (Ramirez and Weglein,
2005b).
The relationship between the predicted and the actual
multiple amplitude
Being the first term in a series that removes first order in-
ternal multiples without subsurface information, the internal
multiple attenuation algorithm provides the capability to pre-
dict the exact time of all first order internal multiples and it
is the first term to predict the amplitudes of the first order
internal multiples. Weglein and Matson (1998) and Ramirez
and Weglein (2005b) examined the difference between the
actual amplitudes of internal multiples and those of the inter-
nal multiple attenuation algorithm predictions. The latter au-
thors called the difference the amplitude factor, and showed
that it is related to the transmission coefficients down to and
across the multiple generator interface (Weglein and Mat-
son, 1998; Ramirez and Weglein, 2005b). The difference
can be understood intuitively by considering the way the al-
gorithm builds its prediction. Consider Figure 1. On the left
panel we sketch an internal multiple and the three primaries
that are used in the algorithm to predict it. The generator is
interface 2. The multiple has the path abcdijkl. The algo-
rithm predicts the multiple by multiplying the amplitudes of
the three primaries, adding the phases of the deeper two,
abcdef and ghijkl, and subtracting the phase of the shal-
lower, ghef . The phase of the actual multiple and the pre-
dicted multiple are therefore identical. However, the ampli-
tude of the actual multiple,

TabTbcRcd(−Rhe)RijTjkTkl,

1The use of the discrepancy for correcting for overburden effects was first suggested by Dennis Corrigan following discussions on the
analytic example presented by A. Weglein at CWP and ARCO, later published by Weglein and Matson (1998).
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and the multiplied amplitudes of the primaries in the predic-
tion,

[TabTbcRcdTdeTef ] × [TghRheTef ] × [TghThiRijTjkTkl],

clearly differ in that the actual multiple does not experience
the transmission history of the shallower primary. That is,
the terms Tde, Tef , Tgh, Thi in the prediction are extrane-
ous. We note that this includes transmission across the
generating interface. Let us next depart from schematics
and consider the general accounting of this behavior for pre-
dicted multiples within an arbitrary stack of layers provided
by Ramirez and Weglein (2005b). Figure 2 shows a 1-D
acoustic model consisting of three reflectors, the lower two
of which have associated reflection coefficients R1 and R2,
and layer velocities c0, c1 and c2. The transmission coeffi-
cient from layer i to layer j is Tij . For example, a multiple
generated at interface 1 in Figure 2 has an amplitude

M1 = [T01T12R2(−R1)R2T21T10]. (5)

The predicted multiple amplitude is:

MPRED
1 = [T01T12R2(−R1)R2T21T10][(T01T10)

2(T12T21)].
(6)

Comparing equations (5) and (6) we see that their ratio,
as we now intuitively expect, carries information about the
transmission coefficients down to and across the multiple
generator interface. Ramirez and Weglein (2005b) refer to
this ratio as the amplitude factor AF:

AF2 =
MPRED

1

M1
= [T01T10]

2[T12T21]. (7)

The index 2 anticipates our later use of this factor for correc-
tive purposes, and signifies that the second interface is the
generator. This terminology follows Ramirez and Weglein
(2005b).

Extension of the amplitude analysis to absorptive
media
Ramirez and Weglein (2005b) assume an acoustic medium,
in which plane-wave transmission losses are local, occur-
ring at the point at which the wave crosses a contrast in ma-
terial properties. For an absorptive stack of layers, in which
transmission loss occurs over the entire course of propa-
gation, an extension of their results is required. In later sec-
tions we will see that this minor theoretical alteration leads to
an important practical difference when the predicted-actual
amplitude discrepancy is exploited. In order to study the
transmission coefficients in an anelastic medium we select
an intrinsic attenuation model to describe amplitude and
phase alterations in a wave due to friction. These alterations
are modeled by a generalization of the wavefield phase ve-
locity to a complex, frequency-dependent quantity parame-
terized in terms of Q. A reasonably well-accepted Q model
(Aki and Richards, 2002) alters the scalar propagation con-
stant of the j’th layer, kj = ω/cj(z), to

kj =
ω

cj(z)

»
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–

, (8)
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log (ω/ω0). The reference frequency
ω0 may be considered a parameter to be estimated, or as-
sumed to be the largest frequency available to a given ex-
periment. The model divides propagation into three parts:

a propagation component, an attenuation component, and
a dispersion component. With this new definition of kj , and
assuming that in Figure 2 the two bottom layers are anelas-
tic, we again construct the prediction. It is convenient to
re-define the transmission coefficient of a given interface to
incorporate absorptive amplitude loss within the layer above
that interface. For instance, the coefficients T12 and T21 of
the previous section derived using the kj of equation 8, be-
come:
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We make particular note of the dependence (via the atten-
uation component) of this definition of transmission coeffi-
cients on the thickness of the layer overlying the interface in
question. With this extension, we have essentially the same
amplitude factor, for instance AF2, in the anelastic case as
we did in the elastic case. By analogy with equation (7):

AF2 = [T01T10]
2
T12T21. (11)Correction of primary amplitudes using internal

multiples
Let us make two comments about the amplitude error anal-
ysis above. First, we see that the discrepancy between the
predicted and the actual multiple for a given generator is di-
rectly related to the transmission losses experienced by a
primary associated with that generator. Second, we note
that the discrepancy, characterized by the amplitude factor
AF, is available directly from the data and the output of the
internal multiple attenuation algorithm. In this section we
use the information in the various AF factors as a direct
means to correct the amplitude of the primary associated
with the generator for transmission effects, in the sense we
have put forward in the introduction. We define what will
become the primary correction operator, PCO, to be built
recursively from the data-determined AFs:

PCOn ≡
PCOn−1

AFn

, PCO0 = 1. (12)

Expanding this operator over several orders n clarifies that
it will indeed act as a correction operator when applied to a
primary whose upward reflection has occurred near the n’th
interface. We find that the precise primary which should
be corrected with the n’th operator depends on whether the
medium is assumed to be absorptive or not.
Correction of primaries in acoustic/elastic media

Consider once again the multiple sketched in Figure 1,
whose generator is interface 2. Setting n = 2, expanding
equation (12), and employing the alphabetical indices we
use in the figure, we have

PCO2 =
1

TghThiTdeTef

. (13)
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If the medium is acoustic/elastic, we note that for the pri-
mary depicted in the middle panel of Figure 1, the “last”
overburden effect on the event before the reflection at inter-
face 3 is the transmission through interface 2, and the “first”
overburden effect on the event after the reflection is again
transmission through interface 2. Consequently, PCO2 is
exactly appropriate as an operator to correct this (middle
panel of Figure 1) primary. More generally, in the acous-
tic/elastic case, the operator PCOn in equation (12) corrects
the n’th primary, leaving the n’th reflection coefficient “bare”
and suitable as input to other inverse procedures:

Rn = PCOn × Pn. (14)

Correction of primaries in absorptive media
Next, let us suppose that the medium in Figure 1 is absorp-
tive, and again consider PCO2. Recall that we may maintain
the same form for the amplitude discrepancy between pre-
dicted and actual multiples in absorptive media and thereby
this operator, PCO2, provided we alter the transmission co-
efficients of a given interface to include absorptive propa-
gation through the layer above that interface. With this ar-
rangement PCO2 is evidently no longer appropriate as an
operator to correct primary 2, i.e., the primary depicted in
the middle panel of Figure 1, because it does not account for
absorptive propagation through the layer between the reflec-
tion and the multiple generator. To maintain the usefulness
of the operator, we instead make an approximation. We as-
sume that in an absorptive medium, the effect of the local
transmission coefficient at a boundary on the amplitude of
a primary is dwarfed by the effect of absorptive propaga-
tion. With that assumption we may simply change the pri-
mary being corrected by PCO2 to the one depicted in the
right panel of Figure 1. This statement is true to within the
combined local transmission coefficient down and up across
interface 2. More generally, in the absorptive case, the (now
frequency-dependent) operator PCOn in equation (12) cor-
rects the n − 1’th primary:

Rn−1(ω) = PCOn(ω) × Pn−1(ω). (15)

Synthetic examples
In this section, we illustrate with simple synthetic exam-
ples the steps necessary to correct a primary for absorptive
transmission losses. We generate zero-offset traces from
plane waves normally incident on three horizontal layered
models assuming the waves behave in accordance with the
propagation constant in equation (8), and using the layer
parameter values in Table 1. We include two primaries and
a first order internal multiple. The traces are wavelet de-
convolved, and bandlimited (3–50 Hz). Figure 3 shows the
traces generated for each model, which differ in their Q val-
ues, ranging from relatively low attenuation to relatively high
attenuation. The arrival times of the two primaries and the
multiple are approximately 1.5s, 2.3s and 2.9s, respectively.

Depth (m) c (m/s) Q1 Q2 Q3

000-500 1500 ∞ ∞ ∞

500-1422 2200 200 100 50
1422-2422 2800 100 50 25
2422-∞ 3300 50 25 10

Table 1. Absorptive Earth models.

The prescription for correcting the primary is:i) Each trace is
used as input to the internal multiple attenuation algorithm,
generating predictions of the internal multiples; ii)each inter-
nal multiple and its prediction are isolated and their spectra
calculated; iii)the reciprocal of the ratio between the spectra
of each internal multiple and its prediction is taken. By equa-
tion (12), this is the appropriate correction operator PCO
and iv)the shallower primary is isolated, and the operator is
applied to its spectrum. We compare the result to an equiv-
alent primary which we model in the absence of all effects
of transmission through the overburden.

Conclusions

We have presented a procedure for correcting a primary for
transmission losses using internal multiples and the output
of the inverse scattering series internal multiple attenuation
algorithm. We have made particular mention and use of the
distinction between situations involving significant absorp-
tion and situations that are largely acoustic or elastic. In
spite of this broad categorization (that we have found to be
practically important), one of the strengths of the approach
is that it will act to correct transmission losses whatever their
physical origin or mechanism, without requiring a precise
model. In this sense the approach is truly data-driven – the
events in the data, in comparison to one another, “decide”
what the transmission loss must be. Our simple numeri-
cal results are encouraging and motivate examination of the
approach in the presence of more complex media, both ab-
sorptive and otherwise. The main tool in this approach, the
internal multiple algorithm, is immediately applicable in mul-
tiple dimensions, and since the amplitude error is in terms of
plane wave transmission coefficients, a plane wave decom-
position of 2D and/or 3D data will likely suffice to extend the
method. Nevertheless, detailed extension of the approach
stands as ongoing and future research. For these reasons
in particular, we identify field data testing as a medium-term
to long-term goal, contingent on the fundamental study of
the internal multiple attenuation amplitudes in multiple di-
mensions.
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Figure 1: Left panel: an internal multiple and the primary subevents
used to predict it. Middle and right panels: associated primaries
whose amplitudes may be corrected using the discrepancy between
the amplitudes of the predicted and actual multiple on the right.

Figure 2: Multilayered medium where the
first layer, 0, is acoustic and the other two
are anelastic. Three events are displayed
and they were used to generate the data-set
for testing the correction of the transmission
losses of a primary in an absorptive medium.
The parameters of the models are shown in
table 1.
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Figure 3: Data generated for the numerical tests com-
prised of two primaries and one multiple for all models.
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Figure 4: A cartoon showing the actual primary in the
top, the corrected primary in the middle and the idealized
primary, that was generated by dropping the transmission
coefficients in the modeling, in the bottom for model 1, the
medium attenuation case.
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