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Abstract

Time-to-depth conversion of a velocity model is
highly desirable to provide alternative initial depth
velocity models for tomographic methods. Unfortu-
nately, the problem is intrinsically unstable and thus
requires regularization. Recently, a number of simi-
lar techniques using image-rays have been proposed
to achieve this aim. We review three time-to-depth
conversion techniques, discuss their algorithmic pro-
cedures and show their differences by applying them
to a 2D synthetic data set. In particular, we demon-
strate that the different procedures react differently to
different kinds of regularization. Although the image-
ray trajectories and the resulting depth velocity mod-
els depend on the regularization employed, the final
depth images corresponding to these different mod-
els are very similar.

Introduction

Over the years, time migration has been routinely
employed for seismic imaging, since it is a very fast
and robust process. In part, the reason for the suc-
cess of time migration is that time velocity-model
building is a very well understood process, leading to
high-quality migration velocity models in time. More-
over, new algorithms for time migration velocity anal-
ysis based on PSTM are emerging (Fomel, 2003;
Schleicher et al., 2008; Schleicher and Costa, 2009).
These approaches can be used to obtain a focusing
velocity model for PSTM, bypassing the conventional
CMP-based velocity analysis.

On the other hand, in areas with complex geological
structure, as for instance in the presence of strong
lateral velocity variations, seismic imaging requires
depth migration. This, in turn, requires the availabil-
ity of a velocity model in depth. Thus, depth velocity
model building is a critical phase for successful depth
imaging. Usually, the estimation of a depth velocity
model relies on tomographic techniques based on it-
erative algorithms. Several tomography procedures
have been proposed for the estimation of depth ve-

locity models, for example Billette et al. (2003) and
Clapp et al. (2004).

Often, tomographic methods start from constant
background velocities or vertically converted stack-
ing velocities. However, the resulting velocity mod-
els are strongly dependent on the initial model and
the employed regularization constraints (Costa et al.,
2008). Therefore, the conversion of a time velocity
model to depth is highly desirable. The robustness of
time migration velocity analysis indicates that such a
procedure is most likely to be able to provide an high-
quality alternative for the initial depth velocity model
for tomography.

For these and other reasons, several attempts have
been undertaken in the recent past to improve on
the time-do-depth conversion of velocity models. In
one line of investigation, Cameron et al. (2007, 2008)
describe how to obtain depth velocity models from
time migration ones using dynamic ray tracing along
image rays. Their algorithm consists of image-ray
tracing to convert time Dix velocities into ray co-
ordinates velocities and then time-to-depth convert
them based on Dijkstra-like fast marching methods
(Sethian, 1999a,b).

An alternative form of parameterization of the prob-
lem was proposed by Iversen and Tygel (2008). Their
technique is very similar to the previous one. The
principal difference is that in the 3D case only single
azimuth time migration velocity field is required as in-
put to construct the depth velocity field. As a con-
sequence, the image-ray transformation and its re-
spective depth velocity field can be generated more
efficiently.

While the conversion of a time migration velocity
model to a depth velocity model is very attractive, its
actual realization is an unstable process. Cameron et
al. (2007) show the illposedness of the problem us-
ing an analytical example. Therefore, regularization
is required for all algorithms trying to achieve a time-
to-depth conversion of the migration velocity model.
Regularization can be added in two phases: (1) dur-
ing the estimation of the Dix velocity field from an es-
timated time migration velocity field, and (2) during
the image-ray tracing.

The objective of our work is to compare three differ-
ent regularization techniques for algorithms convert-
ing velocity models from time to depth. To accomplish
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this we apply the methods under investigation to the
problem of estimating the depth velocity for the 2D
Marmousoft synthetic data set (Billette et al., 2003)
from a given time model. The first technique solves
the problem using the algorithm of Cameron et al.
(2008). Their procedure involves, besides the reg-
ularization in the Dix velocity estimation, a damped
least squares velocity smoothing during the image-
ray tracing. The second technique uses the algo-
rithm described by Iversen and Tygel (2008), where
regularization is built into the image-ray algorithm. In
the last approach we use a modified version of the
original algorithm of Cameron et al. (2007). We pro-
pose to rely on the smoothed properties of the es-
timated Dix velocity and a damped image-ray trac-
ing algorithm. To evaluate the quality of the resulting
depth velocity models, we compare not only the mod-
els themselves, but also the corresponding depth mi-
grated images.

Inversion techniques

All of the proposed time-to-depth conversion tech-
niques rely on the same basic idea. Their main goal
is to simultaneously solve the following kinematic and
dynamic ray tracing equations given by

dx
dT

= v2(x)p

dp
dT

= − 1
v(x)

∇xv(x)

∂Q

∂T
= v2(x)P

∂P

∂T
=
−vnn(x)
v(x)

Q, (1)

with initial conditions

x(T = 0) = x0i

z(T = 0) = 0
v(x0i, T = 0) = vDix(x0i, T = 0) (2)
Q(x0i, T = 0) = 1
P (x0i, T = 0) = 0.

Here, x and p are the position and slowness vectors,
x0 is the lateral migrated coordinate, T is the one-
way traveltime, and Q and P are components of the
propagator matrix (Červeny, 2001). Moreover, v is
the velocity field, and vnn is the second derivative of
v in the direction normal to the ray. In the 2D case,
the velocity v(x) is computed during the image-ray
tracing using the relationship

v(x(T )) = vDix(x0, T )Q(x0, T ). (3)

The time Dix velocity field required for this calculation
is obtained directly from the time migration velocity

field vmig. The relationship is (Cameron et al., 2007;
Iversen and Tygel, 2008)

vDix(x0, T ) =

√
∂(Tv2

mig)
∂T

. (4)

Algorithmic details

In order to stabilize the time-to-depth conversion and
establish better depth velocity fields, the Dix velocity
field should be guaranteed to be smooth. This can
be achieved by regularizing the procedure by adding
a smoothing step. The idea is to filter the time Dix
velocity samples at each position x0. In other words,
we need to solve the least squares problem[

I
αD

]
v̂Dix =

[
vDix
0

]
, (5)

where I is the identity matrix, α is the regularization
parameter, and

D =


−1 1

−1 1
. . . . . .

−1 1

 . (6)

is the finite-difference operator for the vertical gradi-
ent of the velocity field. The least squares solution,
v̂Dix, contains the filtered Dix velocities in time.

Proposed additional regularization

We solve this set of equations applying a variation
of the algorithm proposed by Cameron et al. (2007).
It consists in additionally smoothing the image-ray
wavefronts with least squares (Valente, 2007). For
this purpose, we fit a polynomial to the dataset
(li, vi(T )), in which li is the arc length of the wave-
front between the first and i-th rays at time T , and
vi(T ) is the velocity for the i-th ray at time T . In other
words, we propose to determine the polynomial coef-
ficients, â, by solving the regularized problem

(LTL + β2W)â = LTv , (7)

where β is the regularization parameter, and

L =


1 l1 l21 . . . lp1
1 l2 l22 . . . lp2
...

...
...

...
1 lNX l2NX . . . lpNX

 , (8)

with NX and p indicating the number of samples in
the lateral direction and the polynomial degree, re-
spectively. Moreover, W is the diagonal matrix con-
taining regularization values, represented by

Wii = i2Lii (i = 1, 2, . . . , p+ 1) . (9)

This regularization reduces the dependence of the
solution on the choice of the polynomial degree, thus
making the algorithm more robust.
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Reference algorithms

We compare the results obtained with this algorithm
to those using the algorithms of Cameron et al.
(2008) and Iversen and Tygel (2008). Inspired by the
Lax-Friedrichs method (Lax, 1954), Cameron et al.
(2008) use finite differences (FD) to solve the last two
equations of system (1). Their FD scheme is

Pn+1
j =

Pnj+1 + Pnj−1

2
(10)

− ∆T
4∆xvnj

(
vnj+2 − vnj
Qnj+1

−
vnj − vnj−2

Qnj−1

)
1

Qn+1
j

=
1
Qnj
− ∆T

2
[(V nj )2Pnj + (V n+1

j )2Pn+1
j ]

where Pnj denotes the value of P at the jth image-ray
at x0j and time Tn. Moreover, V nj denotes the Dix
velocity vDix(x0j , Tn) in 2D and its square in 3D. In
this method, no additional regularization is needed.
The regularization is intrinsically performed by the
P -averages that are computed in both equations of
system (10). This method was inspired by the Lax-
Friedrichs method for hyperbolic conservation laws
Lax (1954), because of its total variation diminishing
property. It works because the P -averages stabilize
the estimates, in this way avoiding instabilities in the
FD scheme, e.g., by damping the high harmonics.

The last algorithm used in the comparisons is the
one of Iversen and Tygel (2008). It first computes
the derivatives ∂vDix/∂x0 and ∂2vDix/∂x

2
0, and then

updates the velocity field according to v = vDixQ,
where x0 is the lateral coordinate in migrated time-
domain and vDix is the time Dix velocity at x0 and
T . The last step is to solve system (1), taking into
account that

∂v

∂T
=

∂vDix
∂T

Q+ vDix
∂Q

∂T
(11)

vnn =
∂2v

∂x2
0

+ P
∂v

∂T
. (12)

Equation (12) is an approximation based on the as-
sumption that derivatives of the ray-centered coordi-
nate q with respect to the ray position x0 of higher or-
der than one can be neglected. This is the only reg-
ularization of the problem included in the algorithm
of Iversen and Tygel (2008). They mention, how-
ever, that the time migration and Dix velocity models
should be smooth for their algorithm to work correctly.

Synthetic data example

To test the three different algorithms described
above, we applied them to the the Marmousoft syn-
thetic dataset (Billette et al., 2003). First, we used
the time velocity field shown in Figure1a. However,
only the technique of Cameron et al. (2008) produced

(a)

(b)

Figure 1: (a) Time migration velocity of Marmousoft; (b) Smoothed time mi-
gration velocity of Marmousoft.

acceptable results. The other techniques need a
smoother input model. All test results below were ob-
tained with the smoothed version of the Marmousoft
model shown in Figure 1b.

The first step of the time-to-depth conversion is the
computation of the time Dix velocity field. Figure 2
compares the results of this step (a) without and (b)
with regularization as described above.

Figure 3 shows the image-ray paths for all tech-
niques. Figure 3a and b shows the results with-
out and with Dix regularization, respectively. In the
first one there are only subtle differences between
the image-ray paths resulting from the algorithms of
Cameron et al. (2008) and Iversen and Tygel (2008).
However, there is a more visible difference between
image-ray paths resulting from the proposed algo-
rithm and the other two techniques. This is more vis-
ible in deeper zones. On the other hand, the image-
ray paths in Figure 3b are a bit more similar to each
other. This was to be expected because of the ad-
ditional smoothing regularization in the Dix velocity
computation.

Figure 4 shows the depth velocity fields as obtained
using the three algorithms applied to the Dix veloc-
ity field without the additional regularization step, and
Figure 5 shows their correspondent prestack depth
migrated sections. In both figures, parts (a) to (c) re-
fer to the algorithms in the following order: (a) the one
proposed here, (b) the one of Cameron et al. (2008),
and (c) the one of Iversen and Tygel (2008). We see
some differences between the obtained depth veloc-
ity fields in Figure 4. For example, the algorithm of
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(a)

(b)

Figure 2: Time Dix velocity from the smoothed time migration velocity of
Marmousoft (a) without Dix regularization; (b) with Dix regular-
ization.

Cameron et al. (2008) yields the lowest values in the
high velocity zone in the bottom right corner. Also, the
one of Iversen and Tygel (2008) produces the most
pronounced low-velocity zone in the bottom left cor-
ner. Other, less prominent differences are also visi-
ble. In spite of these rather strong differences, the mi-
grated images in Figure 5 look very similar, indicating
that probably all of the algorithms provide good start-
ing models for a subsequent tomographic analysis.

The final set of Figures 6 and 7 show the results for
the time-to-depth velocity conversion and the corre-
sponding prestack depth migrated images when the
Dix regularization is applied to the Dix velocities. The
figure parts show the results from the different algo-
rithms in the same order as before. The differences
between the individual results are to great extent the
same as before. Actually, the differences between
the velocity models without and with Dix regulariza-
tion (compare Figures 4 and 6) are barely visible.
Nonetheless, the subtle differences that are present
in those models lead to significant differences in the
resulting migrated images (compare Figures 5 and
7). While the images in Figure 7 again do not differ
much from one another, it is clearly visible that many
of the instabilities in Figure 5 are gone.

We conclude from our numerical examples that the
actual choice of the algorithm to solve system (1)
most strongly affects the resulting model. It does not
seem to make much of a difference with respect to
the final migrated image. On the other hand, inde-
pendently of the chosen algorithm, the addition of the
Dix velocity regularization in the process helps to sta-

(a)

(b)

Figure 3: Image-ray paths using the vDix velocity field with parameters p =
5 and β = 0.05. Blue rays correspond to Valente (2007), green
ones to Cameron et al. (2008), and red ones to Iversen and Tygel
(2008) techniques. (a) Dix model without regularization; (b) Dix
model with regularization with α = 0.01.

bilize the migrated images.

Conclusions

Since time migration velocity analysis is a mature and
robust technology, time-to-depth conversion of a ve-
locity model is highly desirable. Such converted ve-
locity models can then be an input to velocity refine-
ment techniques like depth migration velocity analy-
sis or tomographic methods. Unfortunately, the prob-
lem of converting a time velocity model to depth is
intrinsically unstable and thus requires regulariza-
tion. Recently, a number of similar techniques using
image-rays have been proposed to achieve this aim.

In this work, we have compared three different al-
gorithms to estimate a depth velocity model from a
time migration velocity model. All these algorithms
are variations of the original algorithm presented by
Cameron et al. (2007). Due the ill-posed nature of
this problem, the different ways how the different al-
gorithms handle regularization determine the results.
The algorithm of Cameron et al. (2008) only relies
on intrinsic regularization embedded in the employed
Lax-Friedrichs FD scheme. The algorithm of Iversen
and Tygel (2008) merely neglects a second deriva-
tive. Moreover, it assumes the input Dix velocity to be
sufficiently smooth to avoid instabilities or the occur-
rence of caustics during the image-ray tracing. We
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(a)

(b)

(c)

Figure 4: Depth velocity model obtained from time velocity model without
Dix regularization and q = 5, β = 0.05. (a) Valente (2007)
algorithm; (b) Cameron et al. (2008) algorithm; Iversen and Tygel
(2008) algorithm.

have compared these algorithms to a modified ver-
sion of the original algorithm presented by Cameron
et al. (2007), in which we propose to add a smoothing
of the image-ray wavefront during the image-ray trac-
ing to improve stability. Based on our experiences
with synthetic experiments, we propose to add to all
algorithms an additional regularization step in the cal-
culation of the Dix velocity model from the original
time migration velocities.

To test the discussed algorithms numerically, we
have applied all three of them to a time-migration ve-
locity model from the Marmousoft synthetic dataset.
Our numerical experiments indicate that both levels
of regularization are required. A smooth Dix veloc-
ity model is crucial for algorithms that do not smooth
the image front during the ray-tracing, as occurs in
the direct implementation of the algorithm proposed
by Iversen and Tygel (2008), or even the algorithm
proposed by Cameron et al. (2008). Our proposed
additional regularization of the image wavefront dur-
ing the image-ray tracing reduces the dependency on
the initial Dix velocity field, in this way making the al-

(a)

(b)

(c)

Figure 5: Prestack depth migrated sections obtained from depth velocity
models of Figure 3.

gorithm more robust. The particular form of smooth-
ing we have chosen reduces the dependency of the
algorithm on the degree of the polynomial used to fit
the image front.

The depth velocity models estimated in our numeri-
cal examples indicate the effects of the different reg-
ularization strategies. These effects are the most ev-
ident when looking at the image-ray trajectories. In
the shallow part of the model these trajectories are
almost coincident, because of the small lateral varia-
tion of the input Dix velocity field. In the bottom part
of the model, where the lateral velocity variation is
stronger, the image-ray trajectories differ for each al-
gorithm. The additional smoothing of the input Dix
velocity field helps to reduce these differences.

The difference in the image-ray paths leads to dif-
ferences in the converted velocity models. It re-
mains to be seen whether these differences have im-
portant consequences when these models are used
as the initial models for tomography. Our numeri-
cal tests indicate that these model difference do not
have a strong impact on the depth migrated images.
Another important observation concerns the Dix ve-
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(a)

(b)

(c)

Figure 6: Depth velocity models obtained from time-to-depth conversion
with Dix regularization using p = 5, α = 0.01, β = 0.05. (a)
Proposed algorithm of Valente (2007); (b) algorithm of Cameron
et al. (2008); (c) algorithm of Iversen and Tygel (2008).

locity smoothing during the image-ray tracing. This
smoothing has shown a beneficial impact on the
depth migrated images, strongly reducing instabili-
ties, thus making the image less noisy.
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