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Abstract

Going against last decade’s hegemonic trend to propagate
the field through the wave front reconstruction (Lambaré et
al., 1996), this method is based on the full tracing of each
ray at a time and the immediate application of information
available in Hamilton’s differential equations (1) and the first
variation (2) thereof. After that, all information of the ray is
discarded avoiding to spend great amount of RAM memory.

The algorithm is even capable to capture the maximum
field times and amplitudes aiming to increment the seismic
imaging quality.

Thus, like all others, it does not represent any structural
reformulation in the ray theory (Popov, 1977), (Popov and
PSencik, 1978b), (Popov and PSencik, 1978a), but rather the
details in the form of its implementation to obtain a higher
effectiveness for industrial purposes.

It is different from other similar methods also based on
the full ray tracing by and efficient precision control, by hav-
ing a criterion consistent with geometric optics and asymp-
totic series.

The heart of the algorithm is the way to extrapolate am-
plitudes from an ray point to an grid point.

It is robust and can be employed both in seismic imaging
and in velocity field inversion by travel time tomography.

The proposed algorithm involves the numerical asymp-
totic solution of the extended (include the second derivative
of slowness respect to the ray parameter) differential equa-
tions system, in rectangular coordinates, followed by the de-
termination Taylor’s series coefficients and the expansion
around one region close to each ray point.

Despite the need to solve a system of ODEs the algo-
rithm allows to avoid to propagate field in shadow zone, in
this case it can achieve a orders of magnitude faster than
Eikonal solvers like Schneider’s.

Introduction

The recent advances in the intensive computational tech-
nology with production of high computational capacity ma-
chines, particularly the parallel architectures, have woken
up crescent attention to the seismic depth imaging which is
highly sensitive to the velocity field errors.

The velocity field analysis and travel time tomography
demands fast and accurate algorithms.

The main motivation for using reverse time migration
(RTM) is to employ the full acoustical - elastic wave equation

to propagate the stress field, where it is implicit the pres-
ence of a punctual Green’s function centered in the source
- receptor stations, which makes the implementation of the
maximum field travel time (MFT) natural and simple.

The experience with real data indicates that the RTM re-
sults for complex media are sometimes superior than that
obtained by other methods (sometimes worst than time mi-
gration). We believe that part of this qualitative superiority
could be credited just to the MFT, as supported by this work.

This work presents the results of building the maximum
field travel times and amplitudes by the solution of the kine-
matic and dynamical ray tracing system of differential equa-
tions.

This corresponds to include the field amplitude propa-
gation in the version already developed (Cunha, 2003), with
adaptive step time control between the ray points (Cunha,
1999).

Between several velocity models the SEG/EAGE (Amin-
zadeh et al., 1997) was purposefully chosen as a hard test
since it naturally infringes some of the basic assumptions for
the good performance of asymptotic methods such as high
frequencies and / or certain degree of smoothness of the ve-
locity field. The image condition for a point source was de-
termined like RTM, by the Finite Difference Method (FDM),
which gives the reference maximum field travel times (MFT)
and amplitudes (MFA) to compare with the results obtained
by the proposed method.

Theory

The algorithm is based on the solution of the system of the
kinematic differential equations:

d {w(a)}:J[_v“”(QcQ(;(cr))) } (1)

do P(U) P
and dynamic,
d | 52(0) ~VaVa (5 ) 0| 55(0)
dg[gg(a)}:{ (0 &) 1H§%(0>}<Z)

The first system of equations (1) provides the trajectory = (o)
and the slowness p(xz (o)) of the rays, where o is a parame-
ter defined by the equations (3), dr is the time interval, ds is
the interval of the arc length, c¢(x(o)) is the velocity field and
v = {o,a} the 2D global ray coordinates « as the takeoff
angle.

J:{ 0 1], do=cds= *dr, p:E:VwT, (3)
-1 0 c

Lets define: o = x(00,v), ¢ = z(0,7), py = x(00,70)
and p = z(o,~) the vectors in rectangular coordinates of
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the ray and grid points, ray and grid slowness respectively.
Then:

dx=x —xo ,

alo) = 25D 5y aplo) = B oy, (9

are respectively the variations of the vectors position and
slowness with respect to the central ray.

dp=p—pg, (4)

Travel time extrapolation

The extrapolation of the travel transit times 7o = 7(x0) of the
points of the ray for the travel times 7 = 7(x) in the points of
the grid is made through the expansion of the Taylor series,
for the maximum field travel times, to the second order term,
that is:

T(@)=7(x0)+p(w0) -6+ <<M075m> §z)+0(|5z[*) . (6)

where (, ) is the dot product and matrix M, equation (7) is
the second order contribution to the Taylor series,

op| |0x - o ox
Mo= {8'7] [87} e {B'J
o

The Taylor series will be expanded only out of caustics by
satisfying the second equation of (7). The slowness p(xo)
and ray coordinates x( are given by the kinematic system
(1). The second derivatives M, are obtained by the dynamic
system (2). The systems of equations (1) and (2) can be
represented by:

dX

E(J) =F(o0), X(oo)=Xo, F(oo0)=Fo, (8)
where F' propagate both kinematic and dynamic systems
X are the initial values. The numerical solution of this sys-
tem (8) by the Runge-Kutta method is equivalent to:

X(oc+ Ao)=X(o) +

% [H(U)+4H (a+%) +H(0+A0)] o )

>e, (7)

o

The kinematic ray-tracing gives the ray points coordinates
xo by the adaptive step travel time Runge Kutta method
(Cunha, 1999) which control the time step (AT, As, Ao) by
ray curvature criteria. achieving the magnitude rate of 10~°
to the asymptotic relative error when compared with asymp-
totic analytic solutions by keeping constant in the equations
(10) the parameter As,, ,

[Ap[ _ As|V(1/c)

A=l = @ | /o)

where p is the ray curvature and A# is the angle interval
between two consecutive slowness vectors. It's easy to see
the connection with geometrical optics. The control of time
interval control As in the interval:

Asmin S As S Asmaz . (11)

The Taylor series expansion decrements the magnitude rate
of the relative error by a factor of 1073,

In order to capture the time of maximum field the algo-
rithm follow the sequence:

1) for each ray point  take the slowness p(xzq) from (1),
build M (x¢) by first of the equations 7 from informations in
equations 2 and build the Taylor series coefficients,

= % =Af#=constant, (10)

2) determine a square window Al x Al around the ray
point xo with Al given by equation 12,

Al ="TJ(x0) / cAar, (12)

this guarantees all grid point « to receive contributions from
several ray points xo,

3) for each grid point « inside the window calculate:

wt(x,mo):% , Tz, x0) =wix, To) (2, 20), (13)

the small parameter ¢ avoid w to be singular and 7(x, zo)
the travel time in the grid point « evaluated by (6) from the
ray point xo.

4) accumulate the weight factor wq(x,xo) in a matrix
Wi (z) and the weighted time 7(x) in another T'(z),

Wi(z) =Wi(z)+wi(x, o), T(x)=T(x)+7(z,x0), (14)

5) repeat this task for all points of this ray and at final
discard all informations off this ray and go to the next,

6) At he final of all rays divide the elements of weighted
accumulate matrix T'(x) by the elements of the total weight
matrix W (x),

N(z,zq,)
T(x) 1 ’ .
() =ATm+ Wi(z)~ Wi(e) Z we(x, xo,) T(x, 0,), (15)

1=1

where, N(x,xo,) is the total number of ray points x,, who
gives contribution to the grid point « and A, the time delay
from the first arrival to the maximum amplitude travel time of
propagating wavelet in the central ray.

Another possibility is to repeat the steps 1-3 and:

4) for each grid point z make a decision:

if w(x, z0)>T(x) then T'(z) =7(x, o) else endif,

5) repeat the last step (5) until finishing all rays,

6) at the final T'(x) will have only the contribution for
which w¢(x, z¢) is maximum.

Amplitude extrapolation

The propagating field «(x) in the point « due to point source
at x5 can be represented by the integral operator,

(z,xs,t §Re/F (x,z5,w) e *“'dw, (16)

and as a matter of clarity we will omit in the Jacobean ex-
pression the point source coordinate x, and the asymptotic
Green’s function for a non homogeneous media can be rep-
resented by:

rwT (@) s
Ga<z,w>:w0<w>%@), %(w)zw‘;m, (17)

The Jacobean "7 () by,

|0y _|[oe 0w
do’ Oa

7 =15(,0)
At this point we will be defining o and = as ray and grid
points respectively. The Jacobean "7 (z) in a grid point near

the ray will be determined from Jacobean "7 (zo) in a ray
point by a Taylor’s series until its first term,

°T (x)
ox

=|lp,p.ll - (18)

(x = xo)+O (Jz—2o|°) . (19)

Zo
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The chain rule to the rectangular coordinates gives:

0 808+8a8 0 808+8a8 (20)
Or Oxrdo ' Or oo’ 9z 0z 00  0z0a’
applying (20) to the Jacobean:
T 9o 0
W_ 8x80‘[povpa]|+77|[pavpa” ) (21)
T 0o 0 dox
g_ 826 de? a“+$aia|[po-7pa” ) (22)
assume oz e 5= exist and are continuous, then:
0 (Ox 0 [0z
9a (%) = %0 (a@) : (23)
It follows,
T _ o0 [|[opa op,
oz _Bx{‘[aa7pa] +H:poa Ba:| }+
da P, o
e{nl -2l L,
T _ o0 [|[opa op,
9z — 0z {H:aa’pa] +H:paa 6a:| }+
da P, o
2 {| % pa [+ [po ][}
Considering the equation:
op,, J? (Tol =, . _|0,y)
S0 —V[ :| V|: 5 R J(w)—m , (25)

For a 2D homogeneous medium with 7 =s= 2, and there-
fore nearby a point source p, e % will be parallel to the
ray and the last determinant ‘ [ %}

o

, will be null. Given

the absence of term % in differential equations 2, we will
assume hereinafter the contribution of the latter determinant

p,, 22 } as negligible also for non-homogeneous media
and will have:

o
oJ __ 0o dps, dz dps, dz 4 dps, dx

oz — Oz do do do doa da do
dpo, g} 42 {dwz dz _ dpo, ﬁ}
do do da da do do |7
- (26)
97 _ oo dmg_dwz@ﬂ%z@
9z ~— 0z do do do do do do

dpoy, dz 4 2a dpoy dz _ dpo, da
do do o0z doa da da do | °

All terms of these equations are available in the kinematic

H 9o 90 9o 090
(1) or dynamic (2) systems except for terms 52, 5=, 57, 3~

that can be determined by the inverse of matrix

In order to capture the maximum field the algorithm fol-
low the sequence:

1) for each ray point x calculate the coefficients (26)
from informations in the dynamic equations 2 and build the
Taylor series (19),

2) determine a square window Al x Al around the ray
point xo with Al given by equation 12,

3) for each grid point x inside the window calculate:

Gj(wvwo) :wa(mamo)gj(mvmo)v (27)
the small parameter ¢ avoid w, to be singular and "7 (z, x)

the Jacobian in the grid point « evaluated by (19) from the
ray point .

W(@,@0) = [mg o7

4) accumulate the wsight factor w, in a matrix W, and
the weighted Jacobian "7 in another °7 (x),

Wa () =Wa(x)+wa(z,20), ﬁj(l‘) :ﬁj(iﬂ)-l-dj(%iﬂo), (28)

5) repeat this task for all points of this ray and at final
discard all informations off this ray and go to the next,

6) At he final of all rays divide the elements of weighted
accumulate matrix 7 () by the elements of the total weight
matrix W, (zx),
4 T (x
J (@)= Wa(ue)) Vo) i
Where, N(z, zo,) is the total number of ray points xo, who
gives contribution to the grid point x.

Another possibility is to repeat the steps 1-3 and:

4) for each grid point z make a decision:

if wa (2, o) > T (x) then "J (x) =w.(x, z0) else endif,

5) repeat the last step (5) until finishing all rays,

6) at the final °.7 () keeps only the contribution for which
wq(x, o) IS Maximum.

7) for each grid point & calculate the asymptotic ampli-
tude: ©o

Alz) = ; (30)

°J ()
by substituting (17) in (16) and fixing in the point « the max-
imum field central ray travel time as: t,, = 7(x)+ A7, and

e™/* = 1/y/—ww then, -
u(cc,tm) — 1 e F(w) e—ZUJATm dw ,

VT 221 S Vmw

which defines 0. The effect of the asymptotic factor 1/1/2w
in the source function shape can be seen in figure 1B. The
same effect is observed even in finite difference propaga-
tion.

N(m mo)

wq (x, To, )j(w,woi), (29)

(31)

Source function

The source function Fig-1A is defined in time domain by
equation 32:

F8) = (1= 21 (nfe (t — Ty))?) e " WIe=TH* = (39)
where, the parameters f. e Ty determined by,

fc:fco/(?’\/%), Tf:2ﬁ/f607 (33)

and f., the maximum frequency in the source frequency
amplitude (34) spectrum F(f),

2
<127rfo—Lfr27r) R
F(f)ZZE fc37r2< f,

Summary and Conclusions

=P w2 (34)

wedm

F(w)=

1. Figure-2 shows the superposition of the snapshot, t
= 1.3325 s with the isochrones also of maximum field
obtained by the proposed method.

2. Figure-3 shows the effect of applying the phase cor-
rection e ~*/2 for caustics in all of the field (see Fig-1B
and C). The error decrease in the regions after caus-
tics and increase in the rest.

3. Figure-4 shows the transit times determined by the
modified method of Schneider (Faria and Stoffa,
1994), which determines only the first arrivals. It is
smooth, does not exhibit problems in the blind zone
(regions of low amplitudes and low density of rays),
and is fast.
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10.

11.

Figure-5 shows the superposition of the snapshot, t =
1.3325 s, of the field propagated by finite differences
with the isochrone of maximum field, also by finite dif-
ferences. It can be noticed the perfect capture of the
maximum field.

Figures-6 A and B show the results for relative errors
for times and amplitudes by the proposed method by
comparison with the analytical asymptotic solution.
We observe an error growth pattern with the central
ray distance. However the 10~ scale for times and
10~* for amplitudes demonstrate a very good concor-
dance between the proposed numerical asymptotic
solution and the analytical asymptotic solution.

Figure-7-A shows the maximum field travel times
computed by the finite difference method with 20H =z
of source frequency. The discontinuities in the time
field are associated to the fact the maximum ampli-
tude’s field can eventually arrive to the grid point after
the first arrival.

Figure-7-B shows the travel time field by the method
superimposed to the rays. We can observe the the
discontinuities between the region of higher ampli-
tudes of the scattering field and the shadow zone.

Figure-7-C shows the maximum field amplitudes by
the finite difference method superposed to the ray tra-
jectory by the proposed method. Through visual in-
spection we can see a good coherence between the
high amplitude regions and the regions of high den-
sity of rays.

Figure-7-D shows the maximum field amplitudes
superposed to the ray trajectory by the proposed
method. Through visual inspection we can see a
good coherence between the high amplitude regions
and the regions of high density of rays.

Figure-7-E A shows the relative errors for the times
between the method and FDM for 20H z. Observe, in
the legend that the blue-colored regions correspond
to errors above 2%. It is greater in regions near caus-
tics, in regions of great curvature of ray and in points
distant from the ray, that is, in little lighted regions also
called "shadow zones”.

Figure-7-F shows the relative errors for the ampli-
tudes for 20H z. Observe in the legend that the blue
colored regions correspond to errors above 40%. The
amplitudes obtained by asymptotic methods are more
sensitive than times to the velocity field variations.
Such as for the times, the relative errors for the am-
plitudes are greater in the regions near caustics, in
the regions of great curvature of ray and in "shadow
zones”.

i FLd
F[t,Tf, fc]

1
8
0.6
4
2

12. Figure-7-G shows the relative errors for the times for
60H z frequency. Observe in the legend that the blue
colored regions correspond to errors above 2% as in
7-E. However, the red colored regions are much more
abundant. This test confirms that the results for the
asymptotic methods are as better as higher the fre-
quency as provided by the theory. From this result
we can also conclude that the maximum field times
obtained by this method are satisfactory even for this
hard test to which they were subject.

13. Figure-7-H shows the relative errors for the ampli-
tudes for the frequency 60Hz. Observe in the leg-
end that the blue-colored regions correspond to errors
above 40% as in figure 7-F. However the red-colored
regions are more abundant. Such as for times this

test confirms the expected.
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Figure 1: Source function: f., =20Hz, Ty =.177s, f.=3.T6Hz, fpe =6.67Hz.

Eleventh International Congress of the Brazilian Geophysical Society



Cunha, Paulo E. M. 5

Amplitudes

Amplitudes

0015

0.010

0.005

-0.005

-0.010

0015

0.010

0.005

-0.005

0.010

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 o o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 12 \S_X‘DA
/_5" "'\ 500
N ¢
L ] 1
WL - =
, [ 7 il . i
17 el 7 0 Z Al
QE/’ NI \\
Figure 2: Model SEG/EAGE: MF isochrones by the method Figure 3: Caustic correction ¢~ % for SEG model
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1 ot 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 12 13 ot
e =
| iy - |
[/“ A ) g 0005 /‘v\ I =) )
i T
e s =S
: == /

Figure 4: Model SEG/EAGE: isochrones by Schneider Figure 5: Model SEG/EAGE: snapshot and isochrones by FDM

e e e e
35 = 1000

gam\l11177
N7

7
VA
\ 1.5
NI , / /
0 —— 0 2500+ / / ’
e o . e 1
""““:‘.'.',',',',\'mmmmnll\m 05 —
A 0 -
o ot 0 —
S T
J@%m"ﬂm%, ol 3500 \\\
B X 7 7 NN
NN
t_ray_ass_con_dx5 ea_ray_ass_con_dx5
A: Time relative error B: Amplitudes relative error
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Figure 7: SEG model comparative results with FDM, (dz, dz = 5m, 20m),

H: amplitude relative error f.,=60H z

foo = 20H z, 60H 2.
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