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Abstract 
The standard Backus (1962) averaging method is widely 
used for upscaling of the well-log data to seismic 
frequency range. In many cases, with strong 
heterogeneity within the upscaling unit, the Backus 
averaging is not accurate enough. We propose to extend 
the Backus averaging method for the low-frequency case 
and introduce the dispersive Backus model using the 
Baker-Campbell-Hausdorff (BCH) series (Serre, 1965). 
We derive the first- and second-order terms of this series, 
and extend this technique to the medium with arbitrary 
number of layers in a period. That results in the correction 
term for velocity dispersion at low frequencies. We show 
that the phase velocity in such media is the even function 
of frequency. 
The accurate description of velocity dispersion for 
effective medium is very important in seismic modelling 
and inversion of seismic data into effective reservoir 
properties. 

Introduction 
At low frequencies, when the wavelength is much larger 
than the period of the stack of layers, the layered medium 
has the properties of effective homogeneous anisotropic 
medium (Rytov, 1956; Backus, 1962; Schoenberg and 
Muir, 1989). When frequency increases, we observe the 
velocity dispersion (Helbig, 1984; Norris, 1992) and 
periodically located pass- and stop-bands with 
propagation and attenuation of the waves (Stovas and 
Arntsen, 2006; Stovas and Ursin, 2007; Roganov and 
Roganov, 2008). That leads to the specific filtering of the 
waves (Braga and Herrmann, 1992) and results in the 
frequency-dependent caustics in the group domain 
(Roganov and Stovas, 2011).  
In this paper, we derive the correction terms that control 
the velocity dispersion at low frequencies. Similar 
equations can be found in Santosa and Symes (1991) 
and Norris (1992) for different type of media based on the 
analysis of the asymptotic behavior of the roots of the 
Floquet’s equation given in terms of propagator ( )ωP  
for a periodically layered medium (Gilbert and Backus, 
1966; Kennett, 1983; Nayfeh, 1989; Rousseau, 1989). 
The derived approximation for the phase velocity is more 
accurate than the one proposed by Stovas (2007) for the 
weak-contrast finely layered medium. 
In order to approximate of the right-side part of the 
system of differential equations for given frequency and 

horizontal slowness we use the logarithm of propagator 

matrix ( ) ( )1
log

i H
ω ω

ω
=M P . This matrix is correctly 

defined for a given frequency ω  if the matrix ( )ωP  can 
be transformed to the diagonal matrix with different eigen-
values on the main diagonal. If some of these eigen-
values are equal, the correct definition of the logarithm 
requires the condition that the corresponding eigen-
values of matrix ( )ωM  to be located at the same 
Riemann surface. The last condition is satisfied if all 
Bloch’s waves are in the first pass-band or the Brillouin 
zone (Brillouin, 1953; Shuvalov, Kutsenko and Norris, 
2010). 
Taking into account that matrix ( )ωM  is given by the 
logarithm from the product of the exponent matrices; we 
can apply the Baker-Campbell-Hausdorff (BCH) series 
(Baker, 1898; Campbell, 1897; Hausdorff, 1927; Serre, 
1965). In mathematics, the BCH series is used to 
construct the Lie groups for the Lie algebras (Bourbaki, 
1971). Using this technique, we derive the expressions for 
the terms of Taylor series with respect to ω  for matrix 

( )ωM . The zero-order term in this series gives the well-
known Backus averaging (Backus, 1962). 
We derive the first- and second-order terms of this series, 
and extend this technique to the medium with arbitrary 
number of layers in a period. That results in the correction 
term for velocity dispersion at low frequencies. We show 
that the dispersion equation in such media is the even 
function of frequency. 
The theory we develop in this paper can be used for an 
extension of the Backus averaging technique for the low 
frequency wave propagation. This is an important issue 
for matching of well-log data with seismic data, smoothing 
of the well-log data, upscaling of the well-log data and 
seismic modeling. 

The wave propagation in finely layered media 
The vector containing the stress-strain components 
( )j zf  defined for each layer, satisfies the differential 

equation, 
( ) ( ) ( )j

d z
i z

dz
ω ω=

f
M f ,                                             (1) 

where 1i = − , ω  is the frequency and matrix ( )j ωM  

is defined by the horizontal slowness and the type of the 
medium. We can define the matrix ( )ωM  by following 
equation  

( ) ( ) ( )11
log diag mq

i H
ω ω

ω
−= =M P E E ,                 (2) 
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where the matrix E  is composed from the eigen-vectors 

of matrix ( )ωP and 
1

N

j
j

H z
=

= ∑  is the overall layer 

thickness (reservoir thickness). Let us denote  

1

N
k k

k j j
j

z
=

= ∑A M . The BCH series is given by  

( ) ( )2 3

0 1 2H i oω ω ω ω= + − +M M M M    ,                    (3) 

0 1=M A ,     ( )1
1

1

2 i j i j j i
N i j

z z
≥ > ≥

= −∑M M M M M ,                 

( )

( )

3

2 1 1 2 2 1 3

1

1 1 1

6 4 3
1

2 i j k i j k k j i
m i j k

z z z
≥ > > ≥

= − + + −

+ +∑

M A A A A A A

M M M M M M



.                  (4) 

For the vertical propagation and finite number of isotropic 
or transversely isotropic layers, the elements of matrices 

0M , 1M  and 2M  can be given by simple equations. 

Note that matrix 0M  corresponds to the standard 
effective Backus (1962) medium. For a single layer j, we 
have 

10

0
j

j j j

j

Z
z t

Z

−

=
 
 
 

M ,                                                  (5) 

where j j jZ Vρ=   is the impedance, j j jt z V=  is the 

vertical traveltime in layer j, jρ  is the density and jV  is 

the vertical velocity. From equations (4) we obtain 

0

0

0

0

0

b

a
=
 
 
 

M ,  1

1

1

0

0

a

a

−
=
 
 
 

M ,   

2

2

2

0

0

b

a
=
 
 
 

M ,                                                           (6) 

with 

0
1

N

j j
j

a t Z
=

= ∑ ,  0
1

N
j

j j

t
b

Z=

= ∑ ,    

1
1

1

2
ji

i j
N i j j i

ZZ
a t t

Z Z≥ > ≥

= −
 
 
 

∑ ,                                         (7) 

and 

1 3

1 2 3

3 2 1 2

2 2 3

2 1 1 1
1 1

1

1 1 1

6 2 3

N N

j j j
j j

i i

i i i
N i i i i

a a b a t t Z

Z Z
t t t

Z

= =

≥ > > ≥
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+

∑ ∑

∑

2
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3
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1
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N N
j

j
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i

i i i
N i i i i i

t
b a b b t

Z

Z
t t t

Z Z
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+

∑ ∑

∑
,                             (8) 

The wave propagation in a finely layered medium was 
investigated in many papers (see, for example, Stovas 
and Arntsen (2006) and Stovas (2007)). 

Periodically layered medium 
The periodically layered medium is an important tool to 
analyze the vertically heterogeneous reservoirs consisting 
of shale and sand layers. For quasi-vertical propagation, 
the important parameter is the reflection coefficient 
computed at single shale-sand interface. The implicit 
formulas for reflection and transmission responses in a 
periodically layered medium are derived in Stovas and 
Ursin (2007). An example of reservoir model and 
synthetic seismic computed by assuming periodically 
layered sand-shale sequence within reservoir body is 
shown in Figure 1. 
The dispersion equation for a homogeneous reservoir can 
be defined in terms of reflection coefficient 

( ) ( )2 1 2 1r Z Z Z Z= − +  at interface between the layers, 

( )

( )

( )
( )
( )

2 2

1 2 2 1

2 2

1 2 2 1

2 2 2
2 2 1 2

22 2 2

1 2

2 22 2 2
1 24 4 1 2 1 2

2 22 2 2
1 2 1 21 2

1 4

1

4

3 1

2 1 34

145 1

r

V V V r V V

r
H

V V r

rr
H

V V VV rV V r

α α α α

ω

α α
ω

α αα α α α
ω

= + +
−

+
−

+
+ + +

−−

 
 
 

  
  
   

,                                                                                       (9) 
where , 1, 2j jjZ V jρ= = , are the elastic impedances 

from shale and sand layers and , 1, 2j jα =  are the 

fractions for shale and sand. 
The first term in (9) corresponds to the time-average (ray) 
velocity that is the infinite-frequency limit. The sum of the 
first and the second terms represents the Backus (1962) 
velocity that is the zero-frequency limit. The terms at 2ω  

and 4ω  are the first and the second correction terms, 
respectively. 
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Examples 

In order to illustrate the velocity dispersion equation, we 
consider the periodically layered model consisting of two 
layers with the following properties, 1 2000PV m s= , 

1 700SV m s= , 3

1 2000 kg mρ = , 2 3000PV m s= , 

2 900SV m s=  and 3

2 2200 kg mρ = . In Figure 1, one 
can see the angle-dependent velocity dispersion contour 
plot (top-left) indicating the frequency-dependent induced 
anisotropy. The effective phase velocity, the Backus 
velocity and the Backus velocity with correction versus 
horizontal slowness for 2-layer velocity model (top right). 
The effective phase velocity versus horizontal slowness 
for 2-layer velocity model computed for frequency 10Hz, 
20Hz, 30Hz, 40Hz and 50Hz (bottom left). The Backus 
and the ray velocities are shown by red and blue solid 
lines, respectively. Velocity versus frequency taken at 
different values of horizontal slowness is shown in Figure 
1 (bottom right). One can see that the dispersive Backus 
velocity model results in more accurate velocity 
description at low frequencies for the finely layered 
medium. In Figure 2 one can see the results of the 
smoothing the well-log data (left) and errors in effective 
velocity by using the Backus averaging operator and 
corrected Backus operator computed for frequencies of 
10 and 30 Hz. The errors with applying the proposed 
method are much smaller then those computed by 
standard Backus method. In Figure 3 (top), one can see 
the time-average velocity, the Backus velocity and the 
dispersive Backus velocity with the second- and fourth-
order terms from equation (9) by considering the shale-
sand sequence with parameters mentioned above. The 
error in effective velocity taken at frequency of 20Hz is 
about 60m/s. This error can result in uncertainties for net-
to-gross estimation or fluid saturation estimation if seismic 
data are recorded with central frequency of 20 Hz (Figure 
3, bottom). 

Conclusions 
To compute the effective matrix from the stack of the 
layers we use the BCH series. From the truncated BCH 
series we derive the velocity dispersion equation that 
correctly describes the wave propagation at low 
frequencies. The explicit equations derived for an 
acoustic medium, periodically layered medium, medium 
with monoclinic anisotropy and the vertical propagation 
case.  
The derived equations are tested on the two-layer 
periodically layered medium and on the real well-log data. 
The first-order correction term in the velocity dispersion 
equation results in more accurate phase velocity at low 
frequencies. This correction is an extension of the Backus 
averaging method and can be used for upscaling of the 
well-log data and seismic modeling. 
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Figure 1. The effective P-wave phase velocity versus 
horizontal slowness and frequency for 2-layer velocity 
model (top left). The effective phase velocity, the Backus 
velocity and the Backus velocity with correction versus 
horizontal slowness for 2-layer velocity model (top right). 
The effective phase velocity versus horizontal slowness 
for 2-layer velocity model computed for frequency 10Hz, 
20Hz, 30Hz, 40Hz and 50Hz (bottom left). The Backus 
and the ray velocities are shown by red and blue solid 
lines, respectively. Velocity versus frequency taken at 
different values of horizontal slowness (bottom right). 
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Figure 2. Smoothing of the vertical P-wave velocity from 
the well-log data (left) and errors in the Backus velocity 
shown by blue line and the Backus velocity with 
correction shown by red line for frequencies of 10 and 30 
Hz. 
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Figure 3. The blocking model from the well-log data. The 
P-wave velocity profile is shown to the top and the exact, 
the Backus and the Backus with correction velocities 
versus frequencies are shown by black, red and dashed 
line, respectively. 
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