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Abstract  

Pillargrid and unstructured mesh models describe 
geometry and properties in different ways that are 
optimized for distinct types of simulation.  For instance, 
finite-element simulators typically require unstructured, 
watertight and piecewise-polynomial descriptions of 
geometry and properties, while industry-standard fluid-
flow simulators often use a pillargrid description of 
"connected bricks" in which the hexahedral cells may 
have voids between them when converted into a 
piecewise-linear description of the surface geometries, 
and the properties within each cell are constant. 

A conversion method is described to extract the geometry 
and properties from a pillargrid to build a watertight, 
piecewise linear model.  The algorithm comprises 
partitioning the pillargrid into subvolumes within which 
properties are smoothly varying, building triangulated 
bounding surfaces for each of the subvolumes, and 
generating a mesh of property nodes for each of the 
subvolumes.  Such conversion is useful for instance to 
simulate geophysical and geomechanical wave fields 
inside high-resolution reservoir models that are consistent 
with fluid-flow simulation models. The proposed algorithm 
has been validated on both synthetic and field examples. 

 

Introduction 

 
Two types of models are traditionally used for 
representing geological structures in the oil and gas 
industry: pillargrid models (also known as corner-
point grids) and unstructured mesh models. 
Pillargrid models are used for fine-scale reservoir 
description and are designed to be suitable for 
reservoir flow simulation (Ponting, 1989). 
Unstructured meshes, especially tetrahedral 
models, are commonly used for geophysical 
modeling and migration on a large scale that 
includes both the reservoir and the overburden, and 
are designed to be suitable for fast simulation via 
ray tracing (Cerveny, 2001; Chapman, 2004). 
Unstructured meshes are also suitable for other 
modeling applications, e.g., geomechanical 

modeling, performed via finite-element simulation 
(Komatitsch et al., 2000; Dupros et al., 2010; Käser 
et al., 2010).  
 
A pillargrid model is a logically-Cartesian 
tessellation of a Euclidean 3D volume in terms of 
hexahedral cells such that each cell can be 
identified by the integer coordinates (i, j, k). The (i, j) 
indices identify pillar curves, defined in Cartesian 
space, along which the hexahedral cell nodes lie. 
These pillar curves need not be linear. A geological 
surface is then the surface joining the nodal points 
at a common k value. Discontinuities in such a 
surface are supported by allowing adjacent cells 
that share a common pillar to have different nodal 
positions along the pillar curve, thus creating a step 
in the surface. Pillargrids are popular for reservoir 
simulation because the Cartesian cell ordering 
allows a simulator to efficiently address model cells, 
while preserving an ability to describe the 
geometrical and numerical discontinuities between 
cells necessary to represent fault networks and fine-
scale stratification (Mamonov et al., 2007; Djikpesse 
et al., 2011). 
 
The main limitation of pillargrids is that, while they 
are able to describe a broad range of reservoir 
geometries, there are many subsurface and 
reservoir configurations, such as salt domes, that 
pillargrids are topologically unable to describe. This 
limitation is compounded when a zone of interest is 
expanded to include a complex overburden in 
addition to the reservoir, with the result that most 
such models cannot be accurately described by a 
pillargrid. Hence pillargrids are typically not used for 
modeling applications that require overburden 
description, such as for seismic and geomechanical 
simulation. This is why, where particular geometry 
conditions exist, the constraint of being logically 
Cartesian is often dropped. This allows unstructured 
models to describe more accurately complex 
geometries. 
 
The pillargrid and unstructured-mesh models are 
clearly quite different in nature and are used for 
different applications. However, modern seismic-to-
simulation workflows contain iterative loops in which 
the workflow progresses from seismic to simulation 
and back again until the interpretation is complete. 
This type of progressive iteration necessitates 
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conversions from detailed pillargrid models at the 
reservoir level to unstructured-mesh models that 
include both reservoir and overburden components. 
 
There is little literature available on the complexities 
of pillargrid model conversion and potential 
algorithms to overcome them. In this article, we 
describe a method to convert pillargrid reservoir 
models into watertight unstructured models. In the 
next section, the conversion algorithm is detailed. 
Then, the proposed algorithm is demonstrated with 
a set of fine-scale field reservoir models and the 
performance of the algorithm is analyzed. 
Conclusions are drawn in the last section.  
 

Method 

 
Let us now describe the algorithm for converting a 
pillargrid model into an unstructured watertight 
model. 
 

 
Fig.  1: The six phases of the pillargrid conversion 

algorithm. After accessing the pillargrid data, the 
pillargrid is partitioned into subvolumes. All the 
bounding surfaces of these subvolumes are 
triangulated using topological elements of the 
pillargrid. The subvolumes are then filled with points 
and properties. 

In the following we use a broader definition of 
unstructured mesh models, referred to as mesh 
models in this article, than is typically used in finite-
element modeling. The model volume is partitioned 
into a non-intersecting set of subvolumes, each 
enclosed by a triangulated mesh surface, within 
which the property field is smoothly varying. 
Discontinuities in property fields and geometrical 
features can only occur across subvolume 
boundaries. Properties within each subvolume are 
described on a tetrahedral mesh, a Cartesian grid 
or, in principle, any geometry system capable of 
describing that property. Such property 
representations within a subvolume can overlap 
those of other subvolumes without ambiguity 
because the property description is only valid within 
the bounding surface of that subvolume. 
 
A mesh model decouples property description from 
the geometry of subvolumes, allowing property 
population methods to be matched with subvolume 
boundary constraints. For example, properties can 
be represented by a regular grid even though the 
subvolume boundary is arbitrarily complex. This is 
possible because each bounding surface acts as 
―cookie cutters‖ that extracts only the part of the 
property grid that is interior to the bounding surface. 

 

 
Fig.  2: Original partition with three zones and three 

segments.  Zones are horizontal volumes (yellow, blue 

and green) as segments are vertical volumes. 

 

 
Fig.  3: New partition with nine subvolumes. 
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As shown in Figure 1, the conversion algorithm can 
be decomposed as follows: 
 

 Partition the pillargrid into subvolumes 

 Build the watertight surfaces 

 Tessellate the volumes 

 Fill the subvolumes with points and 
populating them with their properties 

 
These conversion steps are described in more 
detail in the following subsections. 
 
Partitioning the pillargrid - Figure 2 shows a 
description of the original partition of the pillargrid. It 
contains zones, faults and segments. A segment is 
a model subvolume that is bounded by fault pillars 
or volume boundaries. However, it can contain inner 
fault surfaces when the pillargrid contains partially 
penetrating faults. A zone is a horizontal volume 
containing a specific geological formation. We wish 
to partition a volume such that property continuity is 
ensured in each subvolume. This allows smooth 
property interpolation to be applied in the property 
population step. To achieve this, subvolumes are 
created as the intersection of zones and segments. 
The number of subvolumes is then equal to the 
number of segments multiplied by the number of 
zones (Figure 3). 
 
Building the watertight surfaces - Watertight 
surfaces are triangulated surfaces in which every 
edge of each triangle is shared by at least one other 
triangle of the surface. Except for fault surfaces, all 
surfaces are built using a triangulation algorithm 
(Shewchuck, 1996). The fault surfaces are built 
based on the half-edge data structure described by 
Kettner (2009). Fault surface, external surface and 
horizon surface construction have a computational 
complexity on the order of n2/3, where n is the 
number of cells in the pillargrid model, while 
undefined surfaces have a cost on the order of n. 
 
Tessellating the volumes - Once the surfaces are 
built, it is possible to extract the boundary surface 
for each volume. The latter is a single closed 
watertight surface possibly made of several patch 
surfaces. The volume can then be tessellated with a 
tetrahedral mesh using the triangulated boundary as 
constraint, or can be filled by a regular grid that is 
trimmed by the bounding surface. Tessellation of 
the volumes into tetrahedra is achieved by a 
constrained Delaunay algorithm (Shewchuck, 
1996). 
 
Populating the properties - The properties for the 
pillargrid are defined on a cell-centered basis, i.e., 
the material properties of each cell are 

homogeneous throughout the cell. One way to 
define smooth properties throughout the volume is 
to interpolate from the pillargrid cell center values. 
We chose to use distance-weighted interpolation for 
general applications, though targeted interpolators 
may be warranted for particular applications. For 
efficiency, these cell-center values are inserted onto 
a Cartesian-grid data structure before interpolation 
in order to facilitate the rapid location of neighbors 
for any point in the volume. Typically, five points are 
used for interpolation. 
 

 

 
Fig.  4: Model B before conversion. 

 

 
Fig.  5: Model E before conversion. 

 
 
Table 1: Field example characteristics. 

Models # cells # 
horizons 

# 
faults 

# 
volumes 

Run 
times 

(s) 

A 39733 25 0 24 240 

B 60048 10 1 9 500.2 

C 4158 23 27 1035 727 

D 108800 35 11 340 2263.6 

E 471240 7 23 120 2022.6 
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Field Results 

 
After testing the method on synthetic examples (not 
presented here), we now present the conversion 
application to five field examples. The tests were 
performed on an Intel Xeon 3.20 GHz two-core 
processor with 12.0 GB RAM using Petrel 2010.1. 
Model characteristics are presented in Table 1. The 
five models are sorted by their geological 
complexity, which is not necessarily synonymous 
with a large number of cells (see, e.g., model C). 
Model A is a very basic model without any faults. 
Model B (Figure 4) has a large partially penetrating 
fault and some self-intersecting cells. Missing fault 
segments and a large number of faults made model 
C more difficult. Model D and model E (Figure 5) 
were selected because of the diversity of their 
difficulties: faults and partially penetrating faults, a 
large number of cells, and some collapsed cells. 
Figures 6 and 7 show the models B and E after 
conversion, respectively. 
 

 
Fig.  6: Model B after conversion. Note the partially 

penetrating fault. 

 
 

 
Fig.  7: Model E after conversion.  Each color represents 

a different surface (a surface being defined by the two 

surrounding volumes).  Note the presence of locally 

collapsed volumes.  

 

 
 
Fig.  8: Benchmarks for five field models.  Global 

computing time are indicated in Table 1. 

 
Figure 8 shows, for each of the five field reservoir 
models, the partition of the computation time over 
the different components of the conversion 
algorithm. Horizon triangulation consumes a 
significant fraction of the compute time. Three 
phases occupy most of the computing time: horizon 
construction, tessellation and fault surface 
construction. The computation time partition for 
model C is explained by the presence of many 
subvolumes, but few cells. Although fault surface 
construction possesses the highest computational 
complexity, but its fraction of the computation time 
is diminished by the low number of fault cells in 
comparison with the number of horizon cells. The 
diagnostic process (e.g., checking for self-
intersecting cells) and the interpolation process do 
not have a significant impact on the overall 
computing time, as can be seen in these examples. 
 
The impact of model size on computation time can 
be seen by comparing the run times of models D 
and E in Table 1. Model E has nearly five times 
more cells than model D, but has a slightly smaller 
run time. This is explained by the large number of 
horizons in model D — every layer was treated as 
an horizon when it was created — whereas there 
are only seven horizons for the sixty-three layers in 
model E. The considerable expense of horizon 
triangulation in model D dominates the larger cell 
count in model E. 
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Conclusions 

 

We have presented how a pillargrid model can be 
successfully converted into a watertight model by 
using the original zone and segment structure of the 
pillargrid. We have also shown the results of such 
conversion on five field models with various 
geologic complexities. Such converted models are 
essential for performing, for instance, downhole 
finite-element simulations for reservoir-targeted 
seismic wave propagation, micro-seismic or 
electromagnetic wave modeling. 
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