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Abstract

Diffracted waves are often associated with geological
structures like faults, pinchouts, wedgeouts or a
sudden change in facies (Kanasewich and Phadke,
1988). Identification of such structures in a seismic
or ground penetrating radar (GPR) image is highly
dependent on our ability to utilize the diffracted energy.
Unfortunately, diffractions often manifest themselves
on seismic (or GPR) data with a much weaker signal
strength compared to reflections and they often fall
within the noise level. As a consequence, classical
signal processing methods treat diffractions as noise
and imaging is carried out in favor of reflections.
Recently, however, different approaches have been
proposed to separate diffractions from reflections
so that additional high-resolution information can be
obtained from direct imaging of the diffracted energy.

In this paper, we propose to perform diffraction and
reflection separation based on the Common Reflection
Surface (CRS) concept. Within this formulation,
suppression (or attenuation) of reflections is carried
out by selecting the appropriate stacking surface
for diffractions based on a coherency measure.
Here we tested both Semblance and MUltiple SIgnal
Classification (MUSIC) as a coherency measure for the
CRS parameter estimation. The potential application
of the technique has been demonstrated employing a
multi-offset GPR dataset.

Introduction

Imaging of possible hydrocarbon traps like faults and
unconformities (especially their accurate locations) is
a very important task in exploration (Kanasewich and
Phadke, 1988; Zhang, 2004). Most of the location
information of such structural hydrocarbon traps is
embedded in the diffracted wave energy (Taner et al.,
2006; Fomel et al., 2007; Moser and Howard, 2008).
As a consequence, traditional seismic or GPR imaging
schemes, tailored for reflections, generally suffer in quality
and resolution (Neidell, 1997). To overcome this problem
many recent attempts have been made to separate
diffractions from reflections and accordingly use them to
obtain a higher resolved image of discontinuities.

Landa et al. (1987) proposed the use of a specialized

double-square-root traveltime moveout, so as to enhance
diffractions and attenuate reflections by stacking. Fomel
and co-workers (2002, 2007) introduced plane-wave
destruction filters to separate diffractions after stack and
use them within migration velocity analysis. Moser and
Howard (2008) used the concept of anti-stationary filtering
to perform depth imaging of diffractions.

In this paper we follow the basic idea of Landa et al (1987)
in the framework of the Common Reflection Surface (CRS)
technique. Standard use of CRS enhances the image
quality based on reflection data. However, within the same
formulation a moveout equation can be constructed which
will enhance diffractions instead of reflections. Hence, an
optimal diffraction stack can potentially be obtained where
all reflections have been efficiently suppressed.

CRS diffraction stack surface

CRS stacking is a method that utilizes multi-coverage
data to simulate Zero Offset (ZO) seismic or GPR
sections. In case of reflections the inherent stacking
operator (or traveltime moveout) depends on two wavefield
concepts: (i) the wavefront associated with the Normal
Incidence Point (NIP) generated by a point source in
depth and (ii) the Normal (N) wavefront corresponding to
an exploding reflector type of source. According to this
formulation, seismic or GPR events are assumed to be
well approximated by the generalized hyperbolic equation.
More specifically, the CRS moveout of the reflection event,
w, is specified by the zero-offset (ZO) traveltime, τ0w , and
(reference) trace location, x0w . In the 2D situation, it is given
by

[τθ
w(xm,h)]2 = [τ0w + Aw(xm− x0w)]2

+ Bw(xm− x0w)2 +Cwh2 , (1)

where (xm,h) are the midpoint and half-offset coordinate
of a source-receiver pair in the vicinity of the reference
location. Moreover,

θ = {Aw,Bw,Cw} , (2)

is the CRS parameter vector, with three parameters, Aw, Bw
and Cw, to be estimated from the data.

In case the recorded data stems from a diffraction, the
condition Bw = Cw holds. This is because, as the reflector
shrinks to a point, the N-wave turns out to be identical to
the NIP-wave (Zhang et. al., 2001). As a consequence, the
hyperbolic moveout of diffractions (or diffraction traveltime),
reduces to,

[τθ
w(xm,h)]2 = [τ0w + Aw(xm− x0w)]2

+ Bw[(xm− x0w)2 +h2] . (3)
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Direct comparison between Eqs. (1) and (3) demonstrate
that the reflections and diffractions follow different
traveltime curves. Hence, in order to enhance the
diffracted contributions relative to those being reflected,
the CRS stacking should be carried out based on Eq. (3).
However, to ensure that optimal CRS parameters are
determined corresponding to the best fitting between the
CRS traveltime moveout and the actual diffraction event(s)
present in the measurements, a coherency measure has to
be employed.

Coherency measures for CRS stacking

Classically, coherency measures in seismic or GPR is
performed based on Semblance. Even though, Semblance
is the most robust algorithm, it has resolution problems
when it comes to closely interfering events (Biondi and
Kostov, 1989). In order to overcome this problem,
higher resolution methods like MUSIC have been proposed
(Biondi and Kostov, 1989; Kirlin, 1992). Here we
briefly review both Semblance and MUSIC and perform
coherency measures for selecting the optimum diffraction
stacking surface.

Semblance

Following Du and Kirlin (1993), Semblance can be
formulated in terms of the covariance matrix of the data.
Within a selected time window along the chosen trial
moveout, Semblance has the mathematical expression

Sc =
uT R(θ)u

Mtr(R(θ))
, (4)

where u is a column vector of ones, which can be
referred to as the unitary steering vector, and R(θ) is the
steered covariance matrix (or the covariance computed
witin a window following the defined traveltime trajectory).
Here θ is the vector containing all the parameters of the
traveltime (compare with equation 2). As in usual notation,
E{} and tr() represent the expected value and matrix
trace, respectively. Moreover, superscript T represents
transpose. Equation (4) provides the interpretation that
Semblance can be regarded as a normalized output/input
energy ratio within the selected time window.

MUSIC

The basic idea behind subspace methods like MUSIC
is to decompose the data covariance matrix into
two orthogonal subspaces: (i) the signal subspace
spanned by the eigenvectors associated with large
eigenvalues and (ii) the noise subspace spanned by the
eigenvectors corresponding to small or zero eigenvalues.
Mathematically, this eigendecomposition of the covariance
matrix can be written as

R(θ) = Vs(θ)Σs(θ)VH
s (θ)+Vn(θ)Σn(θ)VH

n (θ) , (5)

where Vs(θ) and Vn(θ) are the signal and noise subspace
eigenvector matrices while Σs(θ) and Σn(θ) are the
corresponding eigenvalue matrices, respectively. The
mathematical decomposition of the covariance matrix
in Eq. (5) has its physical decomposition counterpart.
Assume that the different sources can be described by a
zero-mean stochastic process and that the noise is white
Gaussian with variance σ2

n . The data covariance matrix is

now given as

R(θ) = E{D(θ)D(θ)H}
= URs(θ)UH +σ

2
n I , (6)

where D(θ) is the data matrix containing all the data within
a window, Rs(θ) is the steered source covariance matrix, U
and I are unitary and identity matrices, respectively. Finally,
H denotes complex conjugate transpose. Note that in case
of uncorrelated sources, the matrix Rs(θ) will be diagonal.

In case of narrowband and uncorrelated signals, MUSIC
exploits the fact that the “correct” moveout, represented
as a steering vector, must lie in the signal subspace and
therefore is orthogonal to the noise subspace eigenvectors.
As a consequence, the projection of the steering vector
onto the noise subspace provides a nearly vanishing value.
The inverse of such a projection (namely the sum of the dot
products of the steering vector with the noise eigenvectors)
should peak when the steering vector represents a correct
moveout. From this consideration the MUSIC measure
of coherency (referred to as MUSIC pseudo-spectrum) is
given by

PMUSIC(θ) =
uuH

uPn(θ)uH , (7)

where Pn(θ) = Vn(θ)Vn(θ)H is the steered noise subspace
projection matrix.

Seismic or GPR signals are both wideband and highly
correlated and therefore the original MUSIC algorithm
needs to be modified accordingly before being applicable
to such data. The consequence of having correlated
sources is that there will be a rank deficiency in the source
covariance matrix Rs(θ) that will result in a mix of signal
and noise subspaces. As a result, the algorithm will
loose its power to peak at the appropriate set of estimated
parameters. In order to handle correlated sources, spatial
smoothing over the covariance matrix can be employed
(Biondi and Kostov, 1989; Kirlin, 1992). The idea is
to subdivide the array of Nr sensors into K identical
overlapping subarrays of Nr − K + 1 receivers and then
compute the covariance for all the subarrays and average
the result. If the covariance matrix for subarray k is Rk, the
spatially smoothed covariance is given by

RK =
1
K

K

∑
k=1

Rk . (8)

To be able to implement spatial smoothing in seismic or
GPR, one has to taper the data within a window following
the event(s). The purpose of this tapering is to make
the delay times of the event linear (which is the basic
requirement behind spatial smoothing) (Biondi and Kostov,
1989). The other advantage of performing the analysis in a
given window is to make the steering vectors, required for
generating the MUSIC pseudo-spectrum, to be frequency
independent. This allows us to handle wideband seismic
or GPR data. Windowing the event can be interpreted as
steering the covariance matrix before eigendecomposition
and using unity steering vectors for generating the MUSIC
pseudo-spectra (Kirlin, 1992).

GPR data analysis

The concept of diffraction separation based on CRS is
tested using a near-surface multi-offset ground-penetrating
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Figure 1: ZO section obtained from manually picked
stacking velocities.

Figure 2: Coherency map of parameter A based on
Semblance.

radar (GPR) dataset (Perroud and Tygel, 2005). The data is
composed of 28 different offsets running every 0.2 m from
0.6 to 6 m. The CMP spacing is 0.1 m covering a 55-m-long
profile.

The overall process is divided in to two steps: (i) perform
velocity analysis for every CMP, where xm = x0w , and
determine parameter Cw = 4/V 2

rms, where Vrms is the root
mean square velocity (in practice we assume that the
stacking velocities resemble the rms-velocities well). Then,
generate a ZO section using these velocities. (ii) setting
Bw = Cw and using a wide aperture search for parameter
Aw in the ZO section, where h = 0. Both Semblance and
MUSIC are used as coherency measures. Finally perform
CRS stacking based on Eq. (3) and generate a diffraction-

Figure 3: Coherency map of parameter A based on MUSIC.

Figure 4: CRS diffraction stack based on Semblance.

Figure 5: CRS diffraction stack based on MUSIC.

only ZO section.

The stacking velocities required to generate the ZO
section were obtained by means of Semblance computed
within a window of 11 samples. Figure 1 shows the
ZO section obtained where most of the diffractions are
hidden behind the stronger reflection energy. Applying the
CRS diffraction condition Bw = Cw and using an aperture
containing 40 traces, we then searched for parameter
Aw. The coherency map corresponding to parameter Aw
obtained from respectively Semblance and MUSIC are
shown in Figures 2 and 3, respectively. The MUSIC
coherency map represents the MUSIC pseudo-spectrum
after being normalized by the energy of Semblance. The
Semblance balancing is applied to condition the pseudo-
spectrum since MUSIC gives unconstrained coherency
values. Finally, we performed CRS stacking based on
Eq. (3) using the parameters determined by Semblance (cf.
Fig. 4) and MUSIC (cf. Fig. 5). In both cases diffractions
are successfully separated from reflections and can then
be used for further high-resolution imaging or velocity
model building. In general, the result obtained using
MUSIC is slightly better resolved and with less noise than
that obtained by Semblance. This is especially noticeable
within the three areas marked by black rectangles in Figs.
4 and 5.

Conclusions

A novel and highly robust approach to diffraction separation
has been introduced and tested out. It is based on a
generalized moveout equation valid for diffractions derived
as a special case of the CRS moveout equation. The best
possible separation between reflections and diffractions
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requires the determination of the optimal CRS moveout
parameters based on the use of a coherency measure. In
this paper both Semblance and MUSIC were investigated.
The proposed technique was applied to a multi-offset
GPR dataset and demonstrated its potential to separate
diffractions. Moreover, the use of MUSIC as a coherency
measure gave an overall better resolved diffraction stack
with less computational noise than in case of Semblance.
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