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Abstract  

Petrophysical information is sometimes available from 
well logs, laboratory measurements, etc. It has been 
shown that incorporation of such information into 
geophysical inversions, especially joint inversion of 
multiple geophysical data sets collected based on 
fundamentally different physics, can greatly improve the 
recovered models. However, when the known 
petrophysical distribution or relationship is not applicable 
throughout the entire region under investigation, the 
application of petrophysical constraints to geophysical 
inversions could seriously distort the resulting models. In 
this study, we propose a new inversion algorithm that is 
capable of building the petrophysical information into the 
inversion, while overcoming the aforementioned problem. 
The lithology differentiation is accomplished by applying 
fuzzy c-means (FCM) clustering algorithm to the models 
inverted from this new method. We illustrate this method 
with a synthetic crosshole seismic example and a gravity 
survey that measures both surface and borehole gravity 
response. 

Introduction 

Geophysical inversion has been widely used in mineral 
and petroleum explorations, as well as in large-scale 
geodynamic studies. Inversion provides a quantitative 
description of the distribution of physical properties of 
interest (e.g. density, velocity) from measured 
geophysical data, which serves as an important avenue to 
understanding the subsurface structure.  

It has been realized that inversion of a single geophysical 
data type may sometimes fail to give a reasonable image 
of the subsurface structure. To deal with this situation, 
geophysicists have developed algorithms that constrain 
geophysical inversion with geologic information (Li and 
Oldenburg, 2000; Farquharson et al, 2008, Lelievre, 
2009). The idea behind such constrained inversions is 
that geophysical models should be consistent with all 
available a priori geologic information. The geologic 
information that can be incorporated into geophysical 
inversions includes, but is not limited to the following: 
physical property measurements, structural orientations, 
geostatistical information about the physical property 
distribution of each rock type present, expected shape of 
a target, etc. In this study, we only consider the 

petrophysical information given by physical property 
measurements, and present a new algorithm that 
effectively builds this valuable information into inversion 
by means of fuzzy c-means (FCM) clustering technique. 

One important question with inversion constrained by 
petrophysical information is the applicability of such 
information. When the available petrophysical information 
is valid throughout the model region, inversion algorithms 
that effectively make use of such a priori information 
usually produce better models than would otherwise be 
possible without petrophysical constraints. However, 
when the petrophysics only describes part of the model 
region, application of such petrophysical constraints to the 
whole model region could seriously deteriorate the 
inverted models (Moorkamp, 2011).  We show that our 
proposed inversion algorithm can deal with this situation 
where only part of the subsurface petrophysical 
information is available.  

An image of the subsurface rock physical property 
distribution can be readily obtained from geophysical 
inversion. These physical properties are macroscopic 
parameters closely related to lithology (Bosch, 1999), and 
their relationship has been extensively studied in the field 
of rock physics. Generally, different lithologies have 
distinct ranges of physical properties such as density and 
velocity.  Inference about the subsurface lithology can 
then be made by grouping physical property values 
obtained from geophysical inversions into several clusters 
on the basis of their distances from each other. FCM 
clustering technique is a powerful tool to explore the 
similarity between data (e.g. physical property values in 
this study) and classify the data under consideration into 
clusters (i.e. lithologies in this study) rapidly and 
objectively (Bezdek, 1981; Duda et al, 2000).  Therefore, 
the task of differentiating between different lithological 
regions is accomplished by applying FCM clustering 
algorithm to the reconstructed physical property models 
obtained from our proposed new inversion method.  

In the following, we begin with a brief introduction of the 
formulation of the inverse problems and the FCM 
clustering algorithm. We then demonstrate how this new 
method works using two synthetic examples. 

Methodology 

Formulation of inverse problems 

The area under investigation is divided into cells in 
Cartesian coordinates with the density and seismic 
velocity being constant within each cell and to be 
estimated by inversion. m


 is the model vector containing 

the values of some physical property (e.g. density or 
velocity in this study) in all of the cells.  
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Suppose we have the observed gravity data or synthetic 
crosshole seismic traveltimes denoted by


. The inverse 

problem is then formulated as an optimization problem 
that minimizes an objective function (Tikhonov and 
Arsenin, 1977): 

d

( ) dm m   


                           (1)                            

where 
d  is data misfit term and measures how well the 

observed data can be reproduced by the inverted model, 
and 

m  is a measure of the model structure and 

determines the characteristics of the inverted model.   

is known as the regularization parameter that balances 
between those two terms.  

The data misfit term d  is defined as: 

2

2
(d dW d G m  
 

)                    (2) 

where G represents the forward modeling operator that 
maps the density model and velocity model to the gravity 
data and the seismic traveltimes, respectively. Wd is the 
data weighting matrix that accounts for the uncertainty 
associated with each datum and correlation between 
data.  

For the model structure term, we use the following 
function developed by Li and Oldenburg (1994): 
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where is the reference model constructed based on 

geology, previous studies in the same area, or any other 
information we may have. Constants ω

refm


s, ωx, ωy and ωz 
reflect our confidence in the reference model. αs, αx, αy 
and αz are constants that control the closeness of the 
reconstructed model to the reference model and the 
roughness of reconstructed model in each direction. In 
this study, we use a zero reference model, and consider 
synthetic 2D models that have only x and z dimensions. 

Fuzzy c-means (FCM) clustering  

FCM clustering is one of the unsupervised clustering 
methods that can be used to organize data into groups 
based on similarities between data entries. And it has 
been utilized in a wide variety of applications, such as 
image processing and pattern recognition (Bezdek, 1981; 
Duda et al, 2000). It is different from hard clustering 
methods in that each data entry can be assigned to 
multiple clusters with different membership values. 
Mathematically, FCM clustering algorithm can be 
expressed as the minimization of the following objective 
function: 

2

2
1 1

N C
q

fcm jk j k
j k

u m v
 

                     (4)    

where N is the number of model cells, C is the number of      

clusters, mj is the physical parameter value at the jth cell, 
and vk is the center of the kth cluster. ujk is the 
membership function that measures the degree to which 
the model parameter at the jth cell belongs to kth cluster. 
The parameter q, also known as fuzzification parameter, 
controls the degree of ‘fuzziness’ of the resulting 
membership functions, and satisfies q ≥ 1.0. In this study, 
we set q = 2.0, which is widely accepted as a good choice 
(Hathaway and Bezdek, 2001). But other choices of the 
value of q would also work. Throughout this paper, we 
assume that the total number of clusters, C, is known.  

By taking the derivatives of the objective function (4) with 
respect to the cluster centers, vk, and the membership 
functions, ujk, and setting the resulting derivative 
equations to be zero, we can iteratively update the cluster 
centers and membership functions until a local minimum 
is found. 

The FCM clustering technique is used to incorporate a 
priori petrophysical information to the separate inversion 
of gravity data and crosshole seismic traveltimes, and to 
differentiate between different rock units after inversions 
have been carried out. 

Formulation of inverse problems with petrophysical 
constraints 

Assume we know all the possible density and velocity 
values in the subsurface based on measurements on rock 
samples. And we would like to construct a density model 
or a velocity model that reproduces the observed 
geophysical data to a certain degree, that has minimum 
structure in a sense determined by the model structure 
term, and that is consistent with the a priori information 
about the physical parameter values. To accomplish this, 
we formulate the following constrained optimization 
problem: 
Minimize: ( ) d mm   


 

Subject to:  2

2
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j k

u m tolerance 
 
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         And   2

2
1

C

k k
k
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
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Here, vk is the kth cluster center for densities or velocities 
automatically updated by FCM algorithm, and tk is the a 
priori physical property values determined from rock 
sample measurements. If the last condition is omitted, 
and we just let FCM algorithm to update the cluster 
centers, we find that the final cluster centers obtained are 
in general not close to those a priori values we have. 
Therefore, we add the last condition that penalizes the 
distance between cluster centers updated by FCM 
algorithm and target cluster centers determined from a 
priori petrophysics. One advantage of this strategy is that 
it does not compromise the well-behaved convergence of 
FCM algorithm, while at the same time it guides the 
search for cluster centers to the desired locations, based 
on a priori petrophysical information.   

By applying the method of Lagrange multipliers, the 
above complicated constrained optimization problem can 
be transformed to an unconstrained optimization problem 
that minimizes the following objective function: 
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The values of the weighting coefficients λ and η are 
estimated by numerical experimentation.  An iterative 
algorithm for minimizing (5) can be developed by 

differentiating ( )m  
 with respect to m , as well as the 

cluster centers, vk and membership functions, ujk, and 
setting the resulting derivative equations to zero.  

As mentioned in the Introduction, this new inversion 
algorithm can deal with the situation where we only have 
partial knowledge of the rock physics in the subsurface. 
For example, assume that there are three different rock 
units in the subsurface, and we have petrophysics 
information for two of them from measurements on rock 
samples. In this case, C = 3, and the last term in equation 
(5) would become: 

3
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1
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k
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  (6)   

In other words, cluster centers, v1 and v2, for which we 
have petrophysical information available, are estimated 

by both FCM algorithm (i.e. 2

2
1

N
q
jk j k

j

u m v


 , k = 1, 2) and 

the petrophysics constraints (i.e.
2

2k kv t , k = 1, 2). 

However, the center for the third cluster, v3, is updated 
only by FCM algorithm by turning off the third 

term,
2

3 3 2
v t , since no petrophysical information about 

the third rock type exists. 

Synthetic Examples 

Inversion of crosshole seismic traveltimes with complete 
petrophysical information 

We present a synthetic crosshole seismic survey over a 
2D area that extends 900m long and 600m deep. We 
position the transmitters evenly in one borehole and 
receivers in the other, as shown in Figure 1. The 
background velocity is 2000 m/s, which is equivalent to 
slowness of 0.5 s/km. We place two slowness anomalies 
within the model region with slowness 0.2 s/km above 
and below the background slowness. To simplify the 
problem, we calculate the traveltimes at each receiver 
using straight-ray tracing. We then contaminate the 
traveltime data with independent Gaussian noise. The 
model region is discretized into 864 25mx25m cells. 

The histogram corresponding to this slowness model, as 
shown in Figure 2, clearly indicates that there are three 
rock types in the subsurface, and the slowness values 
these three rocks can take are 0.3, 0.5 and 0.7 s/km. 
Assume that this valuable petrophysical information is 
known a priori from measurements on rock samples, we 
now consider reconstructing the slowness model from the 
observed traveltimes and these petrophysical information. 

Figure 3 shows the recovered slowness model by 
minimizing function (5) where tk equals 0.3, 0.5 and 0.7 
for k = 1, 2, 3 respectively. In other words, the a priori 
petrophysics information is built into inversion by letting tk 
assume those possible slowness values determined from 

rock physics.  The histogram associated with this 
slowness model is shown in Figure 4.  

 

Figure 1: Slowness model and the geometry of the 
synthetic crosshole seismic experiment. The red triangles 
and circles mark the positions of the transmitters and 
receivers. 

 

Figure 2: Histogram corresponding to the slowness 
model shown in Figure 1. 

For comparison, the slowness model recovered with only 
the traveltime data and without those petrophysical 
constraints is shown in Figure 5, and Figure 6 shows the 
corresponding histogram. 

Comparing the slowness models shown in Figure 3 and 
Figure 5, we observe fewer artifacts in the slowness 
model recovered with both seismic traveltime data and 
petrophysical constraints, and therefore, the spatial 
extents of the slowness anomalies are better defined in 
Figure 3 than in Figure 5.  

The histograms in Figures 4 and 6 show the distribution of 
the recovered slowness values. We compare the range of 
the recovered slowness values. The slowness values lie 
between 0.333 s/km and 0.694 s/km for the model 
recovered with petrophysical constraints, as compared to 
the range of [0.368, 0.630] for the model estimated using 
only traveltime information. It is clear that the former is 
closer to the true range, [0.300, 0.700]. Another 
observation is that the background slowness values 
enclosed by the red ellipse in Figure 4 are more spiky and 
tighter, and thus better resolved, but those in Figure 6 are 
more dispersed and less resolved. We then conclude that 
by incorporating petrophysics information into seismic 
traveltime inversion, we can produce a slowness model 
that not only honors the traveltime data, but also complies 
with the petrophysical information.  
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Figure 3: Slowness model recovered from inverting 
crosshole seismic traveltime data with petrophysics 
constraints. The white boxes show the true locations of 
the slowness anomalies. 

 

Figure 4: Histogram corresponding to the slowness 
model in Figure 3. 

 

Figure 5: Slowness model recovered without 
petrophysical constraints. 

This conclusion is further confirmed by the FCM 
clustering results which show the different rock types 
identified by this clustering technique. Figure 7 shows the 
lithology differentiation result based on the slowness 
model reconstructed using both seismic traveltime data 
and petrophysics. The three different colors, blue, green 
and red, indicate there are three different rock types in 
this region. Figure 8 shows the identified rock types by 
applying FCM algorithm to the slowness model using only 
seismic traveltime data. 

Inversion of crosshole seismic traveltimes with partial 
petrophysical information 

We next assume that we have only partial petrophysical 
knowledge in this region. The petrophysical information 

we have in this case is that there are three different rock 
units in the subsurface, and the possible slowness values 
are 0.3, 0.5 and one unknown value. We now use this 
partial information to constrain the seismic traveltime 
inversion. Figure 9 shows the recovered slowness model 
using seismic traveltime information and partial 
petrophysics information.  

 

Figure 6: Histogram that shows slowness value 
distribution recovered using only seismic traveltime data. 

 

Figure 7: FCM clustering result that shows the three 
different lithological units identified based on slowness 
model shown in Figure 3.  

 

Figure 8: FCM clustering result for the slowness model 
shown in Figure 5. 

If we compare the slowness model shown in Figure 9 with 
the model shown in Figure 5, it is clear that even with only 
part of the petrophysics information the improvement in 
the slowness model reconstruction is obvious.  

The histogram shown in Figure 10 also clearly indicates 
the presence of three different lithology units. The FCM 
clustering result, shown in Figure 11, also outlines the 
locations of the two slowness anomalies reasonably. The 
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cluster center for the Rock III, for which we have no 
petrophysical information, is 0.6564 s/km, which is very 
close to the cluster center estimated using complete 
petrophysics, i.e. 0.6647 s/km. The highest slowness that 
can recovered with partial petrophysical constraints is 
0.6881 s/km, which is slightly lower than the value 
recovered with complete petrophysics, i.e. 0.6973 s/km, 
but is much higher than the values recovered without any 
petrophysical information, i.e. 0.6302 s/km.   

 

Figure 9: Slowness model recovered by inverting 
crosshole seismic traveltimes with partial petrophysical 
constraints. 

 

Figure 10: Histogram that shows the distribution of the 
recovered slowness values as shown in Figure 9. 

 

Figure 11: Lithological differentiation results by applying 
FCM algorithm slowness model shown in Figure 9.  

It is interesting to notice that even if no information about 
the third rock type is incorporated into inversion, we can 
still get the location and the slowness value of that rock 
type recovered very well. This occurs because the 
incorporation of petrophysics information about the other 
two rock types improves the characterization of these two 
rock types, and consequently, we constrain the slowness 
value and the location of the third rock type indirectly. 

Inversion of surface and borehole gravity data 

In this synthetic example, we create a density model that 
is 800 meters deep by 1600 meters long, as shown in 
Figure 12. There are two density anomalies with density 
contrast of 0.4 g/cm3. We calculate the gravity response 
every 20 meters on the surface and every 40 meters in 
both of the two borehole located 50 meters off the ends of 
the model region. Independent Gaussian noise with zero 
mean and 1% standard deviation is added to simulate the 
noisy data collected in reality. The model is discretized 
into 2048 25mx25m cells.  

 

Figure 12: Synthetic density model for gravity inversion.  

The histogram of the bulk density distribution is shown in 
Figure 13, and we can see that there are two different 
rock units with two distinct density values, 0 and 0.4 
g/cm3. The frequency of each rock type is rarely available 
a priori in reality, and therefore, will not be considered as 
a priori petrophysics information that can be incorporated 
into inversion. We next implement the inversion of surface 
and borehole gravity data with the above mentioned 
petrophysics information as constraints. 

 

Figure 13: Histogram that shows the distribution of bulk 
densities in this area. 

Figure 14 shows the resulting inverted model, and Figure 
15 shows the corresponding histogram. It is observed in 
Figure 14 that the inverted density anomalies are placed 
at the correct locations by inversion, and the inverted 
density values at these two locations are mostly 0.4 
g/cm3, which equals the true value. The same observation 
can be made by looking at the histogram, shown in Figure 
15, which clearly shows the presence of two rock types 
with densities of 0 g/cm3 and 0.4 g/cm3. The histogram of 
the recovered densities is almost identical to the 
histogram of the true density model in Figure 13. In other 
words, we successfully recover a density model that can 
predict both the observed gravity data and the a priori 
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petrophysical data. Figure 16 shows the lithology 
differentiation result by applying FCM clustering algorithm 
to the recovered density model. The two different 
lithologies are identified at correct positions and with 
reasonable shapes. 

In this study, we consider the petrophysics information 
that is available from measurements on rock samples, 
surface mapping, or well log, and develop a new inversion 
algorithm that can effectively build this information into 
inversion by means of FCM clustering algorithm.  

We demonstrate the effectiveness of this new inversion 
method using a synthetic crosshole seismic example and 
a gravity survey that measures both surface and borehole 
gravity response. Numerical results show that the final 
inverted model resulting from this new inversion algorithm 
honors both the observed geophysical data (e.g. seismic 
traveltimes, gravity) and the a priori petrophysics 
constraints. Therefore the subsurface geology is better 
represented than would otherwise if inversions were done 
only with geophysical data considered. These post-
inversion models are further processed by FCM clustering 
algorithm to automatically determine the geometry and 
parameter characteristics of different lithology units 
present in the subsurface. In other words, a lithology map 
can be generated by inverting geophysical data with 
petrophysical constraints by means of FCM clustering 
technique. 

 

Figure 14: Inverted density model with petrophysical 
constraints. The white boxes outline the boundaries of the 
true density anomalies. 
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