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Abstract

The waveform inversion problem is inherently ill-
posed. Traditionally, regularization terms are used to
address this issue. For waveform inversion where
the model is expected to have many details reflecting
the physical properties of the Earth, regularization
and data fitting can work in opposite directions: the
former smoothing and the later adding details to the
model. In this paper, we constrain the velocity model
with a model-space preconditioning scheme based
on directional Laplacian filters. This preconditioning
strategy preserves the details of the velocity model
while smoothing the solution along known geological
dips. The Laplacian filters have the property to
smooth or kill local planar events according to a
local dip field. By construction, these filters can
be inverted and used in a preconditioned waveform-
inversion scheme to yield geologically meaningful
models. We illustrate on synthetic and field data
examples how preconditioning with non-stationary
directional Laplacian filters outperforms traditional
waveform inversion when sparse data are inverted
for and when salt is present. Preconditioning could
benefit waveform inversion of real data where irregular
geometry, coherent noise and lack of low frequencies
are present.

Introduction

The goal of waveform inversion is to derive physical
properties of the Earth, such as P-wave velocity, S-wave
velocity, or density. These properties can be related to
the presence of hydrocarbons in the subsurface and their
estimation is one of the most important goal in seismic
processing. In practice, we try to minimize the function

f (m) = ‖uobs−umod‖
norm (1)

where m is a vector of physical properties (what we are
looking for), uobs the observed and umod the modeled
data. Note that f is a 1-D function defined by the choice
of a norm. In practice, the ℓ2 norm is often chosen,
but the ℓ1 norm seems to have more practical needs
for its robustness to non-Gaussian noise present in the
data (Crase et al., 1990). The minimization of f (m) can
be achieved using iterative methods. Tarantola (1984)
establishes that the model can be updated as follows:

mn+1 = mn−αn.∇ f (mn) (2)

where ∇ f (m) is the gradient of f (m) and αn a step-
length that needs to be estimated. It turns out that the
computation of the gradient is equivalent to a reverse-time
migration (Lailly, 1984).

Unfortunately, although a promising approach, waveform
inversion is hampered by many issues. The main one is the
presence of local minima in f . To circumvent this problem,
the data can be inverted in a multi-scale fashion in the
time (Bunks et al., 1995) or frequency domain Sirgue and
Pratt (2004). Second, time damping of the input data offer
opportunities to focus the inversion on different parts of the
data, thus reducing the effects of local minima Brenders
et al. (2009).

Traditionally, ill-posed problems can be solved by adding
a regularization term to the objective function. Very
often, a regularization term that can penalize differences
between neighboring points is selected. However, whereas
waveform inversion tends to add details to a velocity model,
regularization tends to smooth them out, thus working
against our primary goal: fitting the data. One way
to address these somewhat conflicting goals is to use
preconditioning. Here, we show how we can geologically
constrain the velocity model by using a non-stationary
preconditioning approach. This method requires two
ingredients: a dip estimation method and a local dip filtering
technique. We use the method of Fomel (2002) for the
former and of Hale (2007) for the later.

In this paper we first introduce the waveform inversion
approach, with and without preconditioning. We show
that preconditioning amounts to a simple change of
variable which, in effect, changes the gradient direction.
Then, we present our method of local dip filtering,
which follows Hale’s. Finally, we present synthetic and
field data results. These results demonstrate that non-
stationary, preconditioned inversion yields geologically
plausible models.

Method

In this paper, we use a time domain approach for solving
the scalar acoustic wave equation (parametrized in terms
of P-wave velocity vp):

∂ 2u(x,t)

∂ t2
−vp(x)2∇2u(x,t) = vp(x)2s(x,t). (3)

with the source term s(x,t) = δ (x− xs)S(t) where S(t) is
the source function at xs and u(x,t) the pressure field.
Tarantola (1984) derives the expression of the gradient for
the acoustic equation (3) for each component of m (equal
to vp only in this case).

∇ f (mn) =
2

vpn
3 ∑
shots

∑
t

∂ 2−→un
∂ t2
·
←−−
δun (4)
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Figure 1: Illustration of the preconditioning operator S. We
first migrate the synthetic Marmousi dataset in (a). (b)
shows the dip field estimated from the migration result
in (a). The faults are picked by hand and smoothed
horizontally to preserve discontinuities in the velocity
model. Applying S estimated from (b) to a random field
shows in (c) the texture of the migrated section in (a). Note
how the water-column is not smoothed and how the fault
locations are clearly visible.

Figure 2: (a) True velocity model used to generate the
synthetic dataset. (b) Initial guess obtained by smoothing
the true model in (a). (c) Estimated model after waveform
inversion. No preconditioning is applied in this case. Four
frequency bands were used to bandpass both the source
and the data prior to inversion (0-4Hz, 0-8Hz, 0-12Hz, 0-
16Hz). The velocity model is recovered very well.
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where
←−−
δun is the backward propagated residual at iteration

n such that δun = uobs−un and−→un is the forward propagated
synthetic source. For our iterative method, we opted for
the L-BFGS approach of Nocedal (1980). This quasi-
Newton approach computes an estimate of the inverse
Hessian iteratively by using a user-defined number of
solution and gradient vectors. One of the main benefit
of this technique is that the Hessian is never explicitely
formed, thus involving significant memory savings. With
the L-BFGS solver, the model is updated as follows:

mn+1 = mn−αnH
−1
n ∇ f (mn), (5)

where mn+1 is the updated solution, αn the step length
computed by a line search that ensures a sufficient
decrease of f (m) and Hn ≈ ∇2 f (mn) the approximate
Hessian. To improve chances of not falling into a local
minimum, we follow a multi-scale approach Bunks et al.
(1995) where the source and data are bandpassed prior to
inversion. We introduce our preconditioning scheme in the
following section.

Preconditioning

Preconditioning amounts to a change of variable m = Sp

where p is a new variable used for the inversion and S

the preconditioning operator. In our case, this operator
amounts to a non-stationary deconvolution with local dip-
filters. Having introduced the new variable p, the iterative
scheme in Equation (5) becomes:

pn+1 = pn−αnH̃
−1
n ∇ f̃ (pn), (6)

where
∇ f̃ (pn) = S′∇ f (mn) = S′∇ f (Spn) (7)

and S′ is the transpose of S. Therefore, with
preconditioning, we obtain a new gradient direction. In
our scheme, we will opt for a preconditioning operator
that steers the gradient toward a geologically constrained
solution. Note that in Equation (6) the approximate Hessian
in equation (5) is blind to this change of variable as it is built
from gradient and solution step vectors only. Assuming
that we can estimate S and compute its adjoint and
inverse (to accommodate any starting guess p0 = S−1m0),
preconditioning can be easily introduced in any waveform
inversion scheme. Once a solution vector psol has been
found, the final model is obtained by computing

msol = Spsol . (8)

Now we present our choice of preconditioning operator S.

Defining the preconditioning operator S

Preconditioning amounts to a change of the gradient
direction. For waveform inversion, a gradient that embeds
some geological information could help yielding more
meaningful velocity models. To this end, we follow the
approach of Hale (2007) for the construction of the operator
S. Doing so, this operator becomes a non-stationary
deconvolution with directional Laplacian filters.

Directional Laplacian filters are built from small wavekill
filters A, similar to those of Claerbout (1995). Wavekill
filters have the ability to anihilate local planar-events with
a given dip. From these filters, new operators A′A are
formed by autocorrelation. These new operators are then

factorized into minimum-phase filters Ã such that Ã′Ã ≈
A′A. Having minimum-phase filters, we can build a stable
non-stationary deconvolution operator S = Ã−1Ã′−1 and its
inverse S−1 = Ã′Ã. Because the wavekill filter A is dip
dependent, the operator S has the ability to smooth along
a given direction as well. Therefore, if we can estimate
a dip field that contains some desired geological features,
the directional Laplacian filters can make the solution of an
inverse problem resemble these.

In practice, we estimate and use the directional Laplacian
filters as follows: first, we estimate a dip field following
the approach of Fomel (2002); then we estimate a bank
of directional Laplacian filters for a range of angles; finally
we apply the appropriate inverse Laplacian filter on each
sample according to the local dip. One added feature
of our preconditioning scheme is that the strength of the
smoothing can be controlled spatially: different areas with
similar dips can be smoothed across different distances.
These areas are identified by a weighting function which
varies from high values (i.e., little smoothing) to low values
(i.e., strong smoothing).

To illustrate the preconditioning operator S, we show in
Figure 1a the migration result of a synthetic dataset based
on the 2-D Marmousi model. This result is obtained with
Reverse Time Migration (RTM). In real data cases, the
dip field could be re-estimated iteratively from a migrated
image estimated with the updated velocity field, adding
a third outside loop to our waveform inversion algorithm
(one for frequency band and one for the muting/masking
operator). This possibility is not investigated in this paper.

From the RTM image, we can estimate the local dip field
(Figure 1b). This dip field is obtained iteratively with some
smoothing using the method of Fomel (2002). We also
picked by hand the location of three faults. From these
picks, we estimated the dip on the fault and smoothed the
local dip horizontally. These three faults were picked to
get sharper velocity contrasts. Now, we apply the operator
S to a random field the size of the migrated image in
Figure 1a to obtain Figure 1c. We notice that the ”texture”
of the original migrated image is recovered and that no
smoothing is applied in the water layer: for this example,
our weigthing function had only two values separated by
the water bottom. Finally, we can clearly identify the fault
locations. In the next section, we demonstrate that this
operator can be used to constrain the solution of waveform
inversion.

Examples

We illustrate the geologically-constrained waveform
inversion method on a synthetic and field dataset.

Modified Marmousi example

First, we modified the Marmousi 2-D velocity model by
adding a 250 m. thick water layer (Figure 2a). We
created 184 shots 50 m. apart with a fixed receiver
array (369 in total) at the surface using the scalar wave
equation (no density). The source is a Ricker-2 wavelet
with a fundamental frequency of 8Hz. To illustrate
that our inversion works (without preconditioning), we
show in Figure 2c the result of waveform inversion with
four frequency scales (0-4Hz, 0-8Hz, 0-12Hz, and 0-
16Hz) using the starting guess in Figure 2b (obtained by
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smoothing the true model in Figure 2a) and using all the
shots. There is a very good match between the inverted
and true model. Because all the data was used, little would
be gained by using preconditioning.

Figure 3: (a) Gradient ∇ f (mn) of the unpreconditioned
inversion after 4 iterations of the 0-8Hz scale (4 shots,
2.5 Km. apart). (b) Reprojected gradient S∇ f̃ (pn) of the
preconditioned inversion after 4 iterations of the 0-8Hz
scale (4 shots, 2.5 Km. apart). With preconditioning, the
gradient follows the information captured in the dip field and
looks more geologically appealing than in (a).

To make a compelling case, we kept only four shots,
2.5 Km. apart. First, we show in Figure 3 a
comparison between the gradient without preconditioning
∇ f (mn) and the gradient with preconditioning back in
the velocity space S∇ f̃ (pn). Because only 4 shots are
present, the unpreconditioned gradient looks noisy and
resemble geology in very few locations only. Some
authors suggest attenuating the high wavenumbers in the
gradient by smoothing it after each iteration (Ravaut et al.,
2004), where the size of the smoothing operator in the
horizontal and vertical directions is a function of an average
wavelength at a given frequency. This bears a resemblance
with our proposed scheme but doesn’t allow for directional
smoothing. On the contrary, thanks to the preconditioning
with directional Laplacian filters, the reprojected gradient in
Figure 3b shows the geology captured in the dip field of

Figure 1b very well.

Figure 4: (a) Inversion result for the unpreconditioned
inversion. (b) Inversion result for the preconditioned
inversion with directional Laplacian filters. The geology at
the reservoir level is recovered very well in (b).

Now, we show in Figure 4 the inversion results for the
unpreconditioned (Figure 4a) and preconditioned inversion
(Figure 4b). Although quite noisy, the unpreconditioned
result shows the geology very well: the presence of
low frequencies in the data, along with the multi-scale
approach, act as regularization operators. This effect will
be less pronounced with real data where low frequencies
are often missing. The preconditioned inversion result in
Figure 4b is much cleaner: the geology at the reservoir
level is recovered very well.

Gulf of Mexico example

This sections shows the results of our proposed scheme
applied to a 2-D Gulf of Mexico dataset. This dataset,
which has been extensively used in the past to benchmark
multiple attenuation techniques (special edition of The
Leading Edge, January 1999), comes from the Mississippi
Canyon. For our inversion, we decided to keep the
multiples in the data. This clearly increases the non-
linearity of the problem with the advantage of not including
processing artifacts during the inversion (Sirgue et al.,
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2009).

The starting velocity model was derived in two steps.
First, we applied a sediment and salt flood procedure
to define a rough model. Second, we performed two
iterations of reflection tomography to refine it. The
migration result is then used to estimate a dip field that
will later serve the estimation of the directional smoothing
operators. Now, we show in Figures 5b and 5a the results
of FWI with and without preconditioning, respectively. To
increase resolution, we ran the last three iterations of
the geologically constrained FWI without preconditioning.
Clearly, the preconditioned result of Figure 5b is better
behaved above salt than the unpreconditioned result in
Figure 5a. Without preconditioning, artifacts due to sharp
contrasts between salt and sediment velocities, and the
discretization of the top of salt interface, dominate the
image.

Figure 5: FWI results without (a) and with (b)
preconditioning. Artifacts above salt are attenuated with
preconditioning.

To better assess the quality of the inversion, Figure 6
displays a cube of the recorded data (6a) and of the final
residual for the last scale (0-12 Hz) for the preconditioned
inversion only (6b). We do not display the residual cube
without preconditioning since it looks very similar to the one
in Figure 6b. In Figure 6, the front panel is a common-
shot section, the side panel a common-offset section,
and the top panel a constant-time section. Comparing
Figures 6a and 6b, we notice that the inversion is quite
successful at matching the data outside the salt boundaries
(before X=5,000 m and after X=21,000 m): the common-
shot section shows that many events are succesfully
inverted for. However, the residual remains strong where
velocity contrasts are important (e.g., water-sediment and
salt-water transitions.) This observation is consistent
with previous work from Barnes and Charara (2009) and
illustrate the limitations of the acoustic approximation with
field data where sharp velocity contrasts are present.

Conclusions

Preconditioning waveform inversion with non-stationary
directional Laplacian filters can yield geologically

meaningful velocity models. It can help decrease artifacts
due to acquisition geometry or inconsistencies in the data
(not shown here). We anticipate that preconditioning can
play a bigger role with real data where low frequencies
are often lacking, where data are noisy and where the
acquisition geometry is irregular.
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