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Abstract

In this paper we constrain the electrical conductivity
of the lower mantle is by using geomagnetic jerks that
are abrupt changes in the secular variation generated
in the core. By appling Backus’ (1983) mantle filter
theory it is possible to show that a simple 1D mantle
conductivity model is able to generate differential
delays. However, Backus’s (1983) theory considers a
low frequency approximation of the transfer function
that presents some limitations. We also calculate of
the Impulse Response Function (IRF) by a modified
version of Velṁský and Martinec’s (2005) code, using
a direct time-integration of the EM induction equation.
The inverse problem was solved, by exhaustive search.
The misfit values for all simulations, favour a low
conductivity of the lower mantle of about 1 S/m.

Introduction

The mantle electrical conductivity can be analysed by
experimental and theoretical mineral physics, induction
studies that use variations of the external magnetic field,
also using time variations of the core magnetic field.
Most results agree on 1D models of the mantle electrical
conductivity, from about 300 to 1000 km depth, but below
that the electrical conductivity is mostly unknown, besides
the recent efforts of mineral physics experiments. We use
time variations of the core magnetic field in the attempt
to obtain constraints on the mantle electrical conductivity.
Geomagnetic jerks are abrupt changes in the secular
variation generated in the core, represented by an impulse
in the nth time derivative of the magnetic field (Figure 1).

In this paper, we assume that the secular variation around
the time of geomagnetic jerks can be modelled by a set of
straight line segments and that the point where the lines
intersect defines the occurrence time of the geomagnetic
jerk. The difference between the slope of consecutive
straight lines defines the jerk amplitude at each location;
these are used to build spherical harmonic models of each
jerk in each field component.

Global jerks occurred at different epochs: 1969, 1978,
1991, while some localised events happened in 1913, 1925
and 2003 (Alexandrescu et al. (1996), Michelis & Tozzi
(2005), Mandea et al. (2000), Nagao et al. (2002),

Figure 1: Simple schematic of secular variation for a
hypothetical component of the magnetic field that are
used as input in the forward and inverse problems. The
first graph (A) shows the typical V-shape of jerks in the
secular variation and B and C show sketched the secular
acceleration and the third differences, respectively. In this
case, we would have an impulse in the third differences at
the time when the jerk occurred.

Olsen & Mandea (2007)). Each of the worldwide jerks
presents a different geographical pattern of early and late
jerks arrivals, with differential time delays of the order of 2
years. For instance, the 1969 and 1978 jerks were detected
roughtly first in Northern hemisphere and later in Southern
observatories. Pinheiro & Jackson (2008) applied Backus’
(1983) mantle filter theory and concluded that a simple 1D
mantle conducting model is able to generate differential
jerk time delays at the Earth’s surface and even different
patterns for different jerk events. We also showed that the
delay patterns depend strongly on the mantle electrically
conducting model considered and on the jerk morphology
at the CMB.

On the Limitations of Backus Filter Theory

Backus (1983) developed a theory that considers the
mantle as a linear, causal and time invariant filter. In what
follows we adopt the separation by spherical harmonic
degree `, any output at the Earth’s surface (r = a, pm

` (a, t))
can be calculated by the convolution between the input at
the CMB (r = c, (pm

` (c, t))) and the electromagnetic (F̀ (t))
and geometrical (G`) filters:

pm
` (a, t) = G`F̀ (t)∗ pm

` (c, t)

= G`

∫
∞

−∞

F̀ (t− t ′)pm
` (c, t

′)dt ′. (1)

The input jerk is assumed as a simultaneous second order
impulse at the CMB (Figure 1), represented by δ p̈m

` (c, t) =
δ (t), where δ (t) is a Dirac delta. The output can be written
as

δ p̈m
` (a, t) = G`

∫
∞

−∞

F̀ (t− t ′)δ (t ′)dt ′

= G`F̀ (t), (2)
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where F̀ (t) is called the Impulse Response Function
(IRF) that characterizes the mantle filter depending on its
electrical conductivity.

The Fourier transform of the IRF,

F̃̀ (ω) =
∫

∞

−∞

F̀ (t)eıωtdt, (3)

is called the Transfer Function (TF) and for zero frequency
ω = 0,

F̃̀ (0) =
∫

∞

−∞

F̀ (t)dt, (4)

which is the area under the IRF curve for each harmonic
degree `. We use the same convention as Backus (1983)
in which

∫
∞

−∞
F̀ (t)dt = 1.

Backus (1983) assumes a low frequency approximation,
where higher powers than frequency ω2 are neglected
in the series expansion of the Transfer Function. This
assumption simplifies Backus’ (1983) mantle filter theory,
since the IRF can be represented by a Gaussian, and it
leads to a linear relationship between the mantle electrical
conductivity and the time an impulse takes to pass through
the conducting mantle.

In order to demonstrate this low frequecy approximation,
we start from Backus’(1983) equation 2.2:

F̃(ω) = F̃(0)
∞

∑
n=0

1
n!
(ıωτn)

n, (5)

where τn
n are called the nth ordinary moments, given by

(τn)
n =

1
F̃(0)

∫
∞

−∞

F(t)tndt. (6)

and (βn)
n the nth central moments:

(βn)
n =

1
F̃(0)

∫
∞

−∞

F(t)(t− τ1)
ndt. (7)

Since the TF can be expressed by the Fourier transform of
the IRF (shown in equation 3), we have:

F̃(ω) ≈
∫

∞

−∞

F(t)eıωtdt

=
∫

∞

−∞

F(t)
∞

∑
n=0

1
n!
(ıωt)ndt

=
∫

∞

−∞

F(t)dt + ıω
∫

∞

−∞

F(t)tdt

− ω2

2

∫
∞

−∞

F(t)t2dt− ıω3

6

∫
∞

−∞

F(t)t3dt + ...

= F̃(0)+ F̃(0)ıωτ1− F̃(0)
ω2

2
τ

2
2 − F̃(0)

ıω3

6
τ

3
3 + ...,(8)

and if we truncate this expansion at ω2, the TF is rewritten
by

F̃(ω) = F̃(0)
[

1+ ıωτ1−
ω2

2
τ

2
2

]
. (9)

A simple expansion of equation 7 shows that the central
moments can be expressed in terms of ordinary moments;
we find

β
2
2 = τ

2
2 − τ

2
1 , (10)

and substituting τ2
2 from equation 10, in equation 9, we

have

F̃(ω) ≈ F̃(0)
[

1+ ıωτ1−
ω2

2

(
τ

2
1 +β

2
2

)]
≈ F̃(0)eıωτ1−

β2
2
2 ω2

. (11)

In order to calculate the IRF, we take the inverse Fourier
transform of equation 11:

F(t) =
1

2π

∫
∞

−∞

F̃(ω)e−ıωtdω

=
F̃(0)
2π

∫
∞

−∞

eıω(τ1−t)− β2
2
2 ω2

dω

=
F̃(0)
2π

√
2π

β 2
2

e
− (τ1−t)2

2β2
2

=
F̃(0)

β2
√

2π
e
− (τ1−t)2

2β2
2 , (12)

where F(t)
F̃(0) has the form of a Gaussian with mean τ1, given

by the first ordinary moment (n = 1 in equation 6)

τ1 =
1

F̃(0)

∫
∞

−∞

F(t)tdt (13)

and called the delay time, which is the time an impulse at
the CMB takes to pass through the conducting mantle. In
equation 12, β 2

2 is the variance, called the smoothing time
and given by the second central moment (n = 2 in equation
7)

β
2
2 =

1
F̃(0)

∫
∞

−∞

F(t)(t− τ1)
2dt. (14)

If one aims to calculate the delay and smoothing time
constants for each harmonic degree, equations 13 and 14
become:

τ1(`) =
∫

∞

−∞

F̀ (t)tdt. (15)

and
(β2(`))

2 =
∫

∞

−∞

F̀ (t)(t− τ1(`))
2 dt, (16)

since F̃̀ (0) = 1 (equation 4). In order to illustrate the effect
of the electrical conducting mantle, we used two radial
conductivity models, given by:

σ(r) = σc

(c
r

)2γ+2
, (17)

where σc is the electrical conductivity at the CMB, γ a
positive constant and r = c is the core radius. Using
equation 17 we calculate the IRFs and TFs.

The delay and smoothing time constants were evaluated,
by equations 13 - 16, for two radial models. These
examples, illustrated in Figure 2, show that higher
conductivity models and lower spherical harmonic degrees
generate more delayed and usually more smoothed
outputs. It is possible to compare, in Figure 2, the
delay time of the different models and spherical harmonic
degrees: for the most conducting model τ1(1) = 2.57 yr and
for `= 5 the delay time is smaller (τ1(5) = 1.99 yr), while for
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Figure 2: Impulse Response Functions (A, B) and Transfer
Functions (C, D) for the two radial electrical conductivity
models, shown in equation 17. Plots A and C correspond
to the higher conducting model (σc = 3000 and γ = 11) while
plots B and D correspond to the weaker conducting model
(σc = 100 and γ = 8).

the less conducting model τ1(1) = 0.15 yr and τ1(5) = 0.11
yr.

We note that every spherical harmonic component of the
poloidal scalar travels independently through the mantle.
We introduce our simple model for the jerk at the CMB,
namely

δ p̈m
` (c, t) = G−1

` δ p̈m
` (a)δ (t). (18)

and at the Earth’s surface the output is

δ p̈m
` (a, t) = δ p̈m

` (a)F̀ (t). (19)

The matching conditions between an insulator and a
conductor give two representations at the Earth’s surface:

B =−∇V (20)

with

V = a
L

∑
`=1

`

∑
m=0

Bm
` Y m

` (21)

and for the conductor

B = ∇×∇×Pr, (22)

where the relationship between the two is

Bm
` =−

`pm
`

a
. (23)

We now illustrate Backus’ phenomenon of mode
mixing in different locations correspondent to magnetic
observatories, and in different components (X , Y and
Z). Backus (1983) expresses the magnetic components
in terms of the poloidal scalar by a spherical harmonic
expansion:

X(r,θ ,φ , t) =
∞

∑
`=1

`

∑
m=−`

∂Y m
` (θ ,φ)

∂θ
Bm
` (r,θ ,φ), (24)

Y (r,θ ,φ , t) =−
∞

∑
`=1

`

∑
m=−`

cscθ
∂Y m

` (θ ,φ)

∂φ
Bm
` (r,θ ,φ), (25)

and

Z(r,θ ,φ , t) =
∞

∑
`=1

`

∑
m=−`

(`+1)Y m
` (θ ,φ)Bm

` (r,θ ,φ), (26)

where Y m
` (θ ,φ) are the spherical harmonics. Alternatively

to equation 18 one can imagine that the impulse is in the
radial component, given by

δ B̈r(c,θ ,φ , t) =−
1
c

∞

∑
`=1

`

∑
m=−`

`(`+1)δ p̈m
` (c)δ (t)Y

m
` (θ ,φ).

(27)

If the input in the poloidal field is a second order impulse
and a given jerk morphology is considered at a given
location (θ0 is the colatitude and φ0 the longitude) at the
Earth’s surface (r = a), we find for Br

δ B̈r(a,θ0,φ0, t) =
L

∑
`=1

∫
∞

−∞

−A`(r,θ0,φ0)F̀ (t− t ′)δ (t ′)dt ′

=
L

∑
`=1

A`(r,θ0,φ0)F̀ (t)

= F(r,θ0,φ0, t) (28)

where F(r,θ0,φ0, t) is called the Composite Impulse
Response Function (CIRF). We have for Br(a,θ0,φ0)

A m
` (a,θ0,φ0) =−(`+1)Y m

` Bm
` (29)

that simply represent the spherical harmonic components
of the amplitude (or morphology) of the jerk at the Earth’s
surface, as shown in Figure 3 for the Y component of the
1969 jerk.

Figure 3: Spherical harmonic models of the 1969 jerk
amplitudes calculated in this work (A) with truncation
degree L= 5 and by Le Huy et al. (1998) (B) with truncation
degree L = 4.

If one wants to calculate the delay time in different locations
at the surface, one may use equation 13 but for the CIRF
instead of the IRF:

τ1(r,θ0,φ0) =
1

F̃(0)

L

∑
`=1

`

∑
m=0

A m
` (r,θ0,φ0)

∫
∞

−∞

F̀ (t)tdt

=
1

F̃(0)

L

∑
`=1

`

∑
m=0

A m
` (r,θ0,φ0)τ`. (30)
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Since F̃(0) is now the area under the CIRF curve, we can
state that:

F̃(0) =
∫

∞

−∞

F(r,θ0,φ0, t)dt

=
L

∑
`=1

`

∑
m=0

A m
` (r,θ0,φ0)

∫
∞

−∞

F̀ (t)dt

=
L

∑
`=1

`

∑
m=0

A m
` (r,θ0,φ0) = A (r,θ0,φ0), (31)

which is called the total amplitude of each geomagnetic
jerk. If we let:

α`(r,θ0,φ0) =
`

∑
m=0

A m
` (r,θ0,φ0)

A (r,θ0,φ0)
, (32)

then equation 30 becomes

τ1(r,θ ,φ) =
L

∑
`=1

α`(r,θ0,φ0)τ1(`). (33)

If we use the same radial mantle conductivity model given
in equation 17, but changing the parameters to σc = 1000
S/m and γ = 3, and taking the 1978 jerk spherical harmonic
model of Le Huy et al. (1998), it is possible to calculate
the CIRF and the delay time (τ1(a,θ0,φ0)) at a specific
location. For example, by convolving the CIRF at the
location corresponding to Hermanus observatory, with an
assumed impulsive jerk happening at time t = 1969 at the
CMB, the output jerk that happens at around 1974, will
result in a delayed and smoothed version of the original
signal (Figure 4).

Figure 4: Example of the delay and smoothing caused by
a 1D mantle conductivity given by equation 17, with σc =
1000 S/m and γ = 3 for the 1978 jerk spherical harmonic
model given by Le Hut et al. (1998). The black line would
be the jerk for an insulating mantle and the red line for a
conducting mantle.

However, it is not possible to measure the delay time in
the secular variation data because we do not know when
the jerk was generated at the CMB. But one can measure
what we call differential delays in which we choose a
reference location and subtract all the other jerk occurrence
times from the reference. Consequently, α` in equation 32
becomes

∆α`(r,θ0,φ0) =
`

∑
m=0

(
A m

` (r,θ0,φ0)

A (r,θ0,φ0)
−

A m
` (r,θre f ,φre f )

A (r,θre f ,φre f )

)
,

(34)

and the differential delay times are calculated by:

∆τ1(r,θ ,φ) =
L

∑
`=1

∆α`(r,θ0,φ0)τ1(`). (35)

Methodology: Inverse Problem

The forward problem can be summarized as: the output
(jerk at the surface, δ p̈m

` (a, t)) is evaluated by the
convolution between the input that simulates an impulsive
jerk generated simultaneously (at t = 0) at the CMB and the
Composite Impulse Response Function (CIRF, equation
28) for each jerk and location.

We followed seven main steps to solve the inverse problem:

1. Calculation of the Impulse Response Function (IRF)
is performed by a modified version of Velṁský and
Martinec’s [2005] code. The method is based on
direct time-integration of the EM induction equation, and
uses spatial discretization by spherical harmonics and
piecewise-linear finite elements in the lateral and radial
direction, respectively. The electrical conductivity is given
as a piecewise constant function over layers of arbitrary
thickness. Lateral variations of conductivity are neglected
in this case. The boundary condition at the CMB
requires prescription of the time series spherical harmonic
coefficients of the vertical field. When these time series
take the form of a delta function, which is numerically
approximated by a narrow, zero centred and triangular
function normalized to unit integral, the predicted vertical
field at the Earth’s surface corresponds to the product of
the IRF and the geometrical attenuation Gl .

2. Evaluation of the Composite Impulse Response
Function (CIRFs, see Pinheiro & Jackson (2008) and
equation 28) by using the spherical harmonic models of
jerk amplitude.

3. Convolution of those CIRFs with the input jerk (Figure 1),
simulated as a second order impulse in the poloidal field,
simultaneous at the CMB and with unit amplitude;

4. Annual mean evaluation of the output jerk: since we aim
to treat the model in the same way as the data;

5. Fitting of two straight-line segments to the output
annual means by the least-squares method: the intersect
is defined as the delay time (τ1) and the error bars in τ1 are
evaluated;

6. Calculation of jerk differential delay times for all
locations corresponding to the analysed observatories.
The differential delay times (∆τ1) are calculated in relation
to the mean delay value (τm): negative values are
considered as early jerks and positive as late jerks.

7. We compare the differential delays of data with model
predictions, by calculating the misfit value that is the
measure of how well the differential delays of the model
fit the data differential delays:

E =

√√√√ 1
N

N

∑
i=1

(
∆τobsi −∆τmodi

)2

β 2
obsi

, (36)

where N is the number of observatories, ∆τobsi are the
observed differential delays, ∆τmodi the model differential
delays and βobsi the data error bars in ∆τobsi .
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Table 1: Delay times and amplitudes of two examples
simulating different locations by considering harmonic
degree truncation L= 3. For this simulation, we considered:
τ1(1) = 3years, τ1(2) = 2years and τ1(3) = 1year

Location 1
A`(a,θ ,φ) nT/yr2 α`(a,θ1,φ1)
A1(a,θ1,φ1) 4 α1(a,θ1,φ1) 0.1538
A2(a,θ1,φ1) 6 α2(a,θ1,φ1) 0.2308
A3(a,θ1,φ1) 16 α3(a,θ1,φ1) 0.6154
A (a,θ1,φ1) 26

Location 2
A`(a,θ ,φ) nT/yr2 α`(a,θ2,φ2)
A1(a,θ2,φ2) 4 α1(a,θ2,φ2) -0.6666
A2(a,θ2,φ2) 6 α2(a,θ2,φ2) -1.0000
A3(a,θ2,φ2) -16 α3(a,θ2,φ2) 2.6666
A (a,θ2,φ2) -6

In order to have a basis for comparison between different
values of misfit, we define the reference misfit as:

Ere f =

√√√√ 1
N

N

∑
i=1

(
∆τobsi

)2

β 2
obsi

(37)

that is the misfit for an insulating mantle model, where the
differential delays are equal to zero (∆τmod = 0). For the
observatories used in the data analysis of the 1969 jerk, the
reference misfit is Ere f = 1.542 considering our spherical
harmonic model and Ere f = 1.456 using the model of Le
Huy et al. (1998).

Results 1: Application of Backus mantle filter theory

We present one simple example simulating two locations
with different jerk amplitudes, for some chosen delay times
of each harmonic degree (Table 1). The only difference
between the two examples is the amplitude of ` = 3 and
therefore, the α` will also change.

The IRF of each harmonic degree is represented by a
PDF with mean τ` and each of these curves multiplied
by the amplitudes results on the CIRF` while the sum
of CIRF` over ` generates the total CIRF. The PDF is a
good representation in location 1 where τ1(a,θ1,φ1) = 1.54
years and β 2

2 (a,θ1,φ1) = 1.56 years, while in example 2 it
is impossible to represent this ficticious oscillatory CIRF by
a PDF since τ1(a,θ1,φ1) = −1.33 years and β 2

2 (a,θ1,φ1) =
−8.11 years.

In order to give a more realistic example of amplitudes we
consider the 1991 jerk morphology of the East component,
given by Le Huy et al. (1998) and the mantle radial
conducting model in equation 17. The CIRFs and
their approximation by PDFs (Figure 5), at locations
correspondent to 10 magnetic observatories are presented
as example. In some locations, as the one of Observatories
4, the delay and smoothing constants are negative and
can not be represented by PDFs. If a CIRF is slightly
negative for bigger time (t), negative delay and smoothing
times might occurr because their integrants will enhance
the negative part.

In summary, there are specific situations where Backus
theory may not be applied: when the CIRF can not be

Figure 5: Composite IRF (solid line) calculated by the
1978 spherical harmonic model of Le Huy et al. (1998)
and by considering an arbitrary model of radial electrical
conductivity (equation 17). The dashed line represents
the PDF approximation by using Backus’ (1983) mantle
filter theory for 10 locations correspondent to magnetic
observatories.

approximated as PDFs and and consequently the linear
relation between the electrical mantle conductivity and the
delay times are not valid. That is the reason why we
followed another approach in the inverse problem.

Results 2: The Inverse Problem

We calculated the misfit values for the one, two and three-
layer models, where for all of them we adopt the 1-D
electrical conductivity model of Kuvshinov & Olsen (2006)
for the first 700 km. We evaluated the IRFs for a one-layer
model varying the electrical conductivity from 1000 S/m to
0.4 S/m for two jerk spherical harmonic models of the 1969
jerk amplitude (Figure 3). In both models, the misfit values
increase rapidly with conductivities larger than 20 S/m and
below that it oscillates in a range smaller than 0.1 of the
misfit value (about 1.45 for Le Huy et al.’s (1998) model
and about 1.55 by using our model).

There are only two acceptable conductivity models that are
in common when using the two spherical harmonic models:
σ = 3 S/m and σ = 5 S/m. By using the model from Le Huy
et al. (1998) two more models are also smaller than the
reference: σ = 1 S/m and σ = 10 S/m. Consequently, the
range of acceptable models in this analysis vary from 1 S/m
≤ σ ≤ 10 S/m.

In the first two-layer model we divided the lower mantle
into two thick layers of 1250 km (bottom) and 950 km (top)
in the low conducting range of 0.457 S/m to 12.346 S/m.
The misfit values are shown in Figure 7, considering the
two models of jerk amplitudes (see Figure 3). Both results
show low misfit values in the range of 3 S/m for the top and
bottom of the lower mantle. They also present a minima
in the left top corner, which correspond to low values of
conductivity in the top lower mantle (up to 1 S/m) and
high values in the bottom mantle (about 12 S/m that is the
maximum conductivity in this simulation). We increase the
electrical conductivity values in the second simulation of a
two-layer model, but considering a thin mantle layer in the
bottom (300 km) that simulates the D′′. We want to answer
the question whether it is possible to have sensitivity to
variations of electrical conductivity in such a thin layer in
the bottom of the mantle.
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Figure 6: Misfit
between the differential
delays of the data and
model for the one-
layer mantle electrical
conductivity model. We
consider the spherical
harmonic model of the
1969 jerk calculated in
this work (red symbols)
and that taken from Le
Huy et al. (1998) (blue
symbols). The plot in
the top left is a zoom of
the yellow area in the
bigger plot.

Figure 7: Misfit between the differential delays of the data
and model considering the 1969 jerk spherical harmonic
models from Le Huy et al. (1998) for the two-layer model
with the mantle divided into two layers of 1250 km and 950
km.

Figure 8: Misfit for the two-layer model considering the
1969 jerk spherical harmonic model calculated in this work
(A) and taken from Le Huy et al. (1998) (B), for a higher D′′
electrical conductivity and finer variations.

This result, showed in Figure 8, also suggests a low
electrical conductivity for the lower mantle of about 1 S/m
and a broad range of acceptable conductivities for the
D′′. Considering this misfit calculation, it seems the data
is sensitive to variation in the thick lower mantle, but not
sensitive to variations of the D′′ electrical conductivity.

Conclusion

We analysed the limitations to apply Backus’ (1983) mantle
filter theory to constrain mantle electrical conductivity. The
low frequency approximation results in the representation
of the Composite IRF by a PDF, being the delay time the
mean and the smoothing time, the variance. The first
limitation is when the smoothing time is negative, and it can
happen due to mixing of harmonics or when the delay time
of each harmonic degree differs significantly. The second
limitation is when one considers a high mantle electrical
conductivity model and PDFs do not represent accurately
the CIRFs.

The second approach to the mantle conductivity
modelling was to calculate the inverse problems using
the observation of geomagnetic jerks at magnetic
observatories. We calculated misfit values between the
differential delays measured in the data and calculated in
the models of one to three layers. All simulations favour
a low conductivity of the lower mantle of about 1 S/m
allowing a broad range of conductivities for the D′′. We
believe that there is not much sensitivity of our data to
detect changes in the D′′ electrical conductivity.
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Velı́mský, J. & Martinec, Z., 2005. Time-domain,
spherical harmonic-finite element approach to transient
three-dimensional geomagnetic induction in a spherical
heterogeneous earth, Geophys. J. Int., Vol. 161, p81-101.

Twelfth International Congress of The Brazilian Geophysical Society


