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Abstract

In isotropic media we use the scalar acoustic wave
equation to perform reverse time migration (RTM) of
the recorded pressure wavefield data. In anisotropic
media P- and SV-waves are coupled and the elastic
wave equation should be used for RTM. However,
an acoustic anisotropic wave equation is often used
instead. This results in significant shear wave
energy in both modeling and RTM. To avoid this
undesired SV-wave energy, we propose a different
approach to separate P- and SV-wave components for
vertical transversely isotropic (VTI) media. We derive
independent pseudo-differential wave equations for
each mode. The derived equations for P- and SV-
waves are stable and reduce to the isotropic case. The
equations presented here can be effectively used to
model and migrate seismic data in VTI media where
|ε − δ | is small. The SV-wave equation we develop is
now well-posed and triplications in the SV wavefront
are removed resulting in stable wave propagation. We
show modeling and RTM results using the derived pure
P-wave mode in complex VTI media and use the rapid
expansion method (REM) to propagate the wavefields
in time.

Introduction

Reverse time migration (RTM) is becoming the standard
tool for imaging areas where large velocity contrast and/or
steep dips pose imaging challenges, e.g. around and
below salt bodies. RTM propagates the source wavefield
forward in time and the receiver wavefield backward in
time to image the subsurface reflectors. By using the two-
way acoustic wave equation, it naturally takes into account
both down-going and up-going waves and thus enables
imaging of the turning waves and prism waves that are
able to enhance the image of steep salt flanks and other
steeply dipping events associated with complex structures.
In recent years RTM has gained popularity as computer
power has increased enabling its routine application to
prestack seismic data.

Seismic anisotropy is observed in many exploration areas.
Conventional isotropic migration methods are insufficient in
these areas. Thus, where required by analysis of the data,
migration methods may be isotropic, or vertical transversely
isotropic (VTI) or tilted transversely isotropic (TTI). While
isotropic and VTI RTM are widely in use, TTI RTM remains
challenging due to its complexity, numerical stability and
computational cost. (Crawley et al., 2010).

Many researchers have implemented computationally
efficient two-way wave equation modeling and reverse
time migration in anisotropic media with the pseudo-
acoustic approximation (Alkhalifah, 2000; Zhou et al., 2006;
Du et al., 2008; Fowler et al., 2010a,b). Alkhalifah
(2000) introduced a pseudo-acoustic approximation for VTI
media by setting the vertical S-wave equal to zero in the
dispersion relation. Although this dispersion relation for
a scalar wavefield has kinematics close to those of the
P-arrivals in the real elastic vector wavefield, it allows
spurious events. This was initially categorized as a
numerical artifact (Alkhalifah, 2000). Grechka et al. (2004)
identified it as the SV-component, because simply setting
vs = 0 does not result in the vanishing of the shear wave
phase velocity everywhere in an acoustic VTI medium (Liu
et al., 2009). Methods have been proposed to suppress
this artifact, e.g. It is well known that when the source point
is located in an isotropic medium above the anisotropic
medium, the artifact will disappear.

To avoid the undesired SV-wave energy, different
approaches have recently been proposed to model the
pure P-wave mode (Etgen and Brandsberg-Dahl, 2009;
Liu et al., 2009). Recently, Liu et al. (2009) factorized
the dispersion relation presented by Alkhalifah (2000) and
obtained two pseudo-partial differential equations. The P-
wave equation is well-posed for any value of the anisotropic
parameters, but the SV-wave becomes well-posed only
when ε > δ is satisfied.

Here we present a different approach to separate the
P- and SV-wave components in VTI media and derive
independent pseudo-differential wave equations for each
mode. We show that the derived equations for P- and
SV-waves are stable and reduce to the isotropic case.
Rather than using the Alkhalifah (2000) dispersion relation,
we start with the exact dispersion relation for VTI media
as derived by Tsvankin (1996). Using a square root
approximation we obtain approximations for the P- and SV-
wave dispersion relations. The P-wave dispersion relation,
under certain conditions, reduces to the expression used
by Etgen and Brandsberg-Dahl (2009).

In this work we also solve the VTI equation system derived
by Du et al. (2008) and the pure P-wave equation, using the
rapid expansion method (REM), proposed by Pestana and
Stoffa (2010), for explicit time extrapolation. REM has less
numerical dispersion noise than other time extrapolation
operators since it is a better approximation for the second
time derivative.

We demonstrate the theory with some simple 2D synthetic
examples and also illustrate the high-quality images
obtained using REM RTM.
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Approximate scalar wave equations in VTI media

We start with the exact dispersion relations for VTI media
as derived by Tsvankin (1996):
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where θ is the phase angle measured from the symmetry
axis. The plus sign corresponds to the P-wave and the
minus sign corresponds to the SV-wave.
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In order to develop these equation further we introduce the
horizontal P-wave velocity vh and the P-wave NMO-velocity
vn, as given by:
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for SV-waves.
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The new equations 6 and 7 are good approximations for
the P- and SV-wave dispersion relation if∣∣∣∣ 2(ε−δ ) sin2 2θ
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When we set vso = 0 (or f = 1) equations 6 and 7 reduce
to the equations derived by Liu et al. (2009) using the
dispersion relation presented by Alkhalifah (2000). If
instead, we set ε = 0 in this expression, then F = 1, and
equation 6 reduces to the dispersion relation used by Etgen
and Brandsberg-Dahl (2009) and Crawley et al. (2010).

Pure P-wave equation - Implementation

Based on the work of Zhang and Zhang (2009), the two-
way wave equation can be transformed to a first order
equation in time given by:(

∂

∂ t
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)
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where P is the complex pressure wavefield and Φ is
a pseudo-differential operator in the space domain. In
isotropic media, the operator is defined by Φ= v
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in the space domain.

To produce anisotropic wave propagation, without adding
spurious waves, we can use expression 6 and in this case
we have:
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The solution of equation 10 is given by:

P(t +∆t) = e−iΦ∆t P(t) (12)

Adding P(t−∆t) = eiΦ∆t P(t) to equation 12 we obaitn

p(t +∆t)+ p(t−∆t) = 2cos(Φ∆t)p(t) (13)

Now we can revert to p as the imaginary part is decoupled
(cosine is real). Since cosine is an even function,
its expansion contains only powers of Φ2, which is a
differential operator. The cosine function can now be
evaluated by the rapid expansion method (REM) (Pestana
and Stoffa, 2010).

Numerical results

In a modeling experiment, time snapshots of wave
propagation in a homogeneous VTI medium (vpo =
3000m/s, ε = 0.24, and δ = 0.1) are simulated with the
source pulse in the center of the model. Figure and
Figure correspond to the same time snapshots from the
simulations using the rapid expansion method (REM) to
the system of equations of Du et al. (2008) for the p
and q wavefields. On these figures a diamond-shaped
spurious SV-wave front can be seen. Figure shows the
P-wave and Figure shows the SV component computed
from the decoupled P- and SV-wave equations proposed
by Liu et al. (2009) and also solved by REM. The system of
equations introduced by Du et al. (2008) produce a strong
unwanted spurious SV-wave and it is possible that SV-
wave artifacts will contaminate RTM images. Using the
decoupled P- and SV-waves, it is clear that Figure has
only a P-wave component, while Figure has only a SV
wave component. Therefore, a pure P-wave wave equation
offers a better imaging alternative since it does not have the
SV-wave artifacts.

To demonstrate the theory proposed here, we use the
same anisotropic model parameters. In Figure we have
the the same time snapshot from simulation by REM to the
pure P-wave ( eq. 6 ) and in Figure we have the SV-wave
component (eq. 7). Both were computed using F = 1+2ε−γ2

1−γ2

and with γ2 =
v2

so
v2

po
= 1/4. In Figure we also have the
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simulation of the pure P-wave, but with F = 1, which is the
same dispersion relation used by Etgen and Brandsberg-
Dahl (2009). The pure-P wave results presented in Figure
and Figure are quite close. However, the SV-wave using
the new SV-wave equation proposed here (eq. 7) is stable.
In the new SV-wave equation, the shear wave velocity is
not zero which removes the SV wavefront triplication and
results in stable wave propagation (Tsvankin, 2001).

Next an anisotropic salt model is used to test the
performance of imaging quality with the theory presented
here and with the wave equations solved by REM. The
input 2D synthetic dataset was generated from this model
using elastic finite-difference modeling. The vertical P-
wave velocity is shown in Figure . The ε and δ parameters
are shown in Figure and Figure , respectively.

Figure shows the anisotropic reverse time migration result
of the p wavefield, using REM for Du et al. (2008)’s system
of equations. This result was obtained using the correct
model parameters with vso = 0. For comparison, we show
the isotropic reverse time migration results (Figure ) which
was imaged using the P-wave velocity. In Figure , the
anisotropic migration improves the image of the steeply
dipping reflectors including the faulted bed and salt body.
It also correctly images the reflector in the center of the
section which is caused by variations only in the anisotropic
parameters. This event nearly disappears in the isotropic
image and generates some noise artifacts.

In Figure we show the result of prestack RTM using our
equation 6 with F computed with v2

so
v2

po
= 1/4 and ε equal to

the maximum value in the model. Figure is the prestack
RTM image obtained using F = 1 as proposed by Etgen
and Brandsberg-Dahl (2009). We see that these two
images are very similar to the results obtained using the
equations from Du et al. (2008). But our new equation and
the one proposed by Etgen and Brandsberg-Dahl (2009)
are computationally more efficient.

Conclusions

A new procedure to derive individual P- and SV-waves for
VTI media is presented and analyzed. The dispersion
relation proposed by Alkhalifah (2000), which yields a
kinematically good approximation of P-waves in a VTI
medium, has with a major drawback in that it generates
a spurious SV-wave. Here we separate the P- and SV
modes into two wave equations based on the Tsvankin
(1996) dispersion relations. The equations propose here
can be effectively used in VTI media where |ε−δ | is small.
The SV-wave equation obtained is now well-posed and
the triplication in the SV wavefront, as documented by
Tsvankin (2001), is removed and allows a stable wave
propagation. We also showed also that the pure P-wave
equation is equivalent to the P-wave derived by Liu et al.
(2009) when we have vso = 0, and that it reduces to the
equation used by Etgen and Brandsberg-Dahl (2009) when
the F factor, introduced in our equations, is equal to 1. The
pure P-wave derived here was used in our implementation
of 2D VTI reverse time migration using the rapid expansion
method (REM). The REM solution provides accurate and
nondispersive wave propagation and it was used to time-

step the Du et al. (2008) system of equations and also our
pure P scalar wave equation. We concluded that the RTM
VTI media using our decoupled equation and REM for time
extrapolation provides accurate images.
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(a) (b)

(c) (d)

Figure 1: Impulse response: (a) P-wave wavefield and (b)
q-wave wavefield, of the Du et al. (2008) equations solved
by REM. They clearly show the spurious SV-wave artifacts.
(c) P and S wavefields (d) from the decoupled P- and SV-
wave equations proposed by Liu et al. (2009) also solved
by REM.
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(a) (b)

(c)

Figure 2: Impulse response: (a) Pure P-wave wavefield
and (b) SV-wave wavefield using the method presented
here. REM was used to solve equations 6 and 7,
respectively. (c) P-wave wavefield solved by REM of the
dispersion relation given by equation 6 with F = 1).

(a)

(b)

(c)

Figure 3: Salt model; (a) Velocity field; (b) delta and (c)
epsilon.

(a)

(b)

Figure 4: (a) Anisotropic reverse time migration by REM
using the Du et al. (2008) equations and the correct VTI
model parameters. (b) Isotropic reverse time migration also
solved by REM.
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(a)

(b)

Figure 5: (a) Anisotropic reverse time migration by REM our new pure-P wave equation ( eq. 6) and (b) by solution proposed
by Etgen and Brandsberg-Dahl (2009) ( equation 6 with F=1.)
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