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Abstract

In this paper, a pure P wave equation for an
acoustic 2D TTI media is derived. Compared with
conventional TTI coupled equations, the resulting
equation is unconditionally stable due to the complete
isolation of the SV wave mode. To avoid numerical
dispersion and produce high quality images, the
rapid expansion method (REM) is employed for
numerical implementation. Synthetic results validate
the proposed equation and show that it is a stable
algorithm for modeling and reverse time migration
(RTM) in a TTI media for any anisotropic parameter
values.

Introduction

The isotropic acoustic assumption for seismic processing
may not always be appropriate. This fact has been
recognized in areas such as the North Sea and the
Canadian Foothills. Conventional isotropic methods may
cause errors in anisotropic media, which result in low
resolution and misplaced images of subsurface structures.
Therefore, imaging of surveys in the presence of anisotropy
requires a migration method that can handle general
anisotropic media to obtain a significant improvement in
image quality, clarity, and positioning.

Some ordering in the structure of rocks, such as fine-
layering and parallel cracks can induce anisotropic effects
in the wave propagation. VTI RTM is a good simplification
to image such structures since they have similar properties
with a VTI media (Crampin, 1984) However, the VTI
assumption may not be satisfied for imaging under steeply
dipping anisotropic overburdens. For example, if the
sedimentary layering is not horizontal, such as shale
masses overlying dipping salt flanks, the symmetry axis is
most likely to be tilted. Ignoring the titled symmetry not
only causes image blurring and mispositioning of the salt
flank, but also degrades and distorts the base of salt and
subsalt images (Zhang and Zhang, 2009). In other words, a
local symmetry assumption instead of a global one is more
realistic.

Alkhalifah (2000) started from the dispersion relation and
proposed a pseudo-acoustic wave equation for TI media
by setting the shear wave velocity along the symmetry

axis to be zero. Based on Alkhalifah’s pseudo-acoustic
approximation, a number of variations of pseudo-acoustic
wave equation have been developed to account for VTI
media (Zhou et al., 2006a; Du et al., 2008; Duveneck et
al., 2008). Assuming the symmetry axis is non-vertical
and locally variable, extensions from VTI to TTI have been
developed (Zhou et al., 2006b; Fletcher et al., 2008; Zhang
and Zhang, 2008). This allows the anisotropy to conform
to spatially variable structure.

The main problem of previously published methods is
that they are not really free of shear waves. Because
simply setting the shear wave velocity along the symmetry
axis to be zero does not result in the vanishing of the
shear wave phase velocity everywhere in an acoustic
TI media (Grechka et al., 2004). The generated SV
component is usually considered as numerical artifacts
and may cause numerical instabilities in a TTI media.
It is well known that a small smoothly tapered circular
region with ε = δ setting around the source (Duveneck
et al., 2008) can avoid shear wave artifacts generated
from the source. However, contrasts existed in anisotropic
parameter models elsewhere still produce shear wave
artifacts. To avoid the undesired SV wave mode ultimately,
different approaches have recently been proposed to
model the pure P wave mode (Etgen and Brandsberg-Dahl,
2009; Liu et al., 2009; Pestana et al., 2011) for the VTI
case.

In this paper, we construct a pseudo-differential wave
equation for the P wave mode in 2D TTI media. Rather
than following Alkhalifah’s (2000) work, we start with a
new derivation from the exact dispersion relation that was
originally derived by Tsvankin (1996). Using a square root
approximation, we obtain an approximation for the P wave
dispersion relation. The rapid expansion method (REM)
proposed by Pestana and Stoffa (2010) is chosen to
propagate the wavefield in time since it has no numerical
dispersion. Impulse responses for modeling using the new
equation have been shown. RTM examples associated
with the BP 2D TTI benchmark dataset are presented as
well to validate the proposed algorithm. For comparison,
results from the TTI coupled equations (Zhou et al., 2006b)
solved by REM are also presented.
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Formulations

Coupled Equations for 2D TTI Media

Start with the exact phase velocity expression (Tsvankin,
1996)
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where θ is the phase angle measured from the symmetry
axis, Vp0 is the P wave velocity in the direction of symmetry
axis, ε and δ are Thomsen’s anisotropy parameters
(Thomsen, 1986), and f = 1−V 2

s0
/V 2

p0
with the shear wave

velocity along the symmetry axis denoted by Vs0 . Setting
Vs0 = 0 (i.e., f = 1) and after some algebraic manipulations,
TTI acoustic wave propagation can be formulated as a
coupled 2nd-order PDE system. The 2D version reads
(Zhou et al., 2006b)
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where differential operators H1 and H2 are defined as{
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Here, p is the usual pressure wavefield, q is an introduced
auxiliary wavefield to ease numerical computations, and φ

is the dip measured to the vertical.

Pure P Wave Equation for 2D TTI Media

We revisit equation 1 and expand the square root to first
order (i.e.,

√
1+X = 1+X/2), then get an approximation of

the P wave phase velocity
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Equation 4 (Pestana et al., 2011) is a good approximation
for the P wave dispersion relation when∣∣∣∣ 2(ε−δ )sin2 2θ
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Since we have the following relations sinθ = V (θ)kx/ω,
cosθ = V (θ)kz/ω, and V 2(θ) = ω2/(k2

x +k2
z ), plugging them

into equation 4 gives

ω
2 = V 2

p0

[
(1+2ε)k2

x + k2
z −

2(ε−δ )k2
x k2

z
F k2

x + k2
z

]
, (6)

where F = 1 + 2ε/ f . Setting ε = 0, equation 6 reduces
to the same dispersion relation used by Etgen and
Brandsberg-Dahl (2009) and Crawley et al. (2010)
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The above dispersion relation is true for VTI media with a
vertical symmetry axis. The same relation for TTI media
with arbitrary orientation of symmetry axis can be deduced
from equation 7 through a variable change corresponding
to a rotation of the z-axis in the counterclockwise sense.
The wavenumber operators in the rotated coordinate
system write(
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)
. (8)

From equation 8 we have{
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Substituting k2
x and k2

z in equation 7 with k̂2
x and k̂2

z , we
formulate the P wave dispersion relation for TTI media
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Multiplying both sides of equation 10 with the wavefield
function p(ω,kx,kz) in the Fourier domain, followed by an
inverse Fourier transform to both sides and then using
the relation iω ↔ ∂/∂ t, we finally derive the pure P wave
equation in the time-wavenumber domain for 2D TTI media
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Numerical Implementation

Equation 11 can be solved numerically by the rapid
expansion method (REM). The REM for reverse time
migration problem was proposed by Pestana and Stoffa
(2010) for the isotropic case and has been successfully
applied to the pure P wave equation (equation 6 or 7) for the
VTI case as well (Pestana et al., 2011). It is based on the
Chebyshev polynomial expansion (Tal-Ezer et al., 1987)
and applied to seismic modeling by Kosloff et al. (1989). It
has no dispersion and allows a better approximation for the
2nd-order time derivative when combined with the Fourier
pseudo-spectral method to compute the spatial derivatives.
The numerical implementation of equation 11 using REM is
described in Appendix.
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Numerical Examples

In all of the following 2D numerical examples, wave
propagation is simulated in time using the REM. First,
we use impulse responses to demonstrate the proposed
algorithm. Figure 1 shows time snapshots of wave
propagation in a 2D homogenous TTI media. A diamond-
shaped SV wavefront arises from the middle of Figure 1a
using the TTI coupled equations. Figure 1b is obtained by
solving equation 11, and it is clear that it contains only the
P wave component. Therefore, the proposed pure P wave
equation offers a better modeling and migration alternative
since it does not have the SV wave mode.
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Figure 1: Wavefield snapshots in a homogeneous TTI
media (Vp0 = 3000 m/s, ε = 0.24, δ = 0.1, θ = 45◦). (a) is
obtained by solving the TTI coupled equations. (b) is from
the solution of the pure P wave equation.

Second, we show some examples associated with the BP
2D TTI model. Figure 2 shows the parameter values for
Vp0 , ε, δ and θ of a small region of the BP model. Figure 3a
displays a forward modeling snapshot from the TTI coupled
equations. Notice that numerical instabilities arise from
the interaction of the SV wavefront with rapid variations
in the tilt axis. Setting ε = δ around locations with a
sharp dip contrast can stabilize wave propagation and the
resulting snapshot is displayed in Figure 3b. This selective
anisotropic parameter matching scheme (Yoon et al., 2010)
is simple and easy to implement, but it greatly depends
on the choice of selection and is tricky to implement for
a complicated model. Besides, it alters wave kinematics.
Instead, we use equation 11 to propagate the wavefield
and the result is shown in Figure 3c. Here the remaining
instabilities are due to the ringing effects in the wavefield.
To remove the high frequency spatial oscillations and thus
stabilize the computation, a band pass filter is applied to the
wavenumber operators. The stabilized wavefield snapshot
without ringing effects is displayed in Figure 3d. Another
way to eliminate the ringing effects is to compute the spatial
derivatives with an odd order on a staggered grid (Corrêa
et al., 2002). Without ringing effects, equation 11 provides
a stable result and is completely independent of variations
in the anisotropic parameter models. Wave kinematic
properties are well preserved also.

Finally, RTM results are presented. Figure 4a is obtained
by solving the TTI coupled equations using the selective
anisotropic parameter matching scheme. With the pure P
wave equation given by equation 11, we get a RTM image
shown in Figure 4b, which is comparable with Figure 4a but
without any change to the anisotropic parameter values.
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Figure 2: Partial region of the BP 2D TTI model: (a) Vp0 ; (b)
ε; (c) δ ; and (d) θ .
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Figure 3: Wavefield snapshots in the BP 2D TTI model.
(a) Wavefield snapshot from the TTI coupled equations.
The wave propagation is unstable when a sharp contrast
exists in the dip model. (b) The same as (a) but simply
setting ε = δ in regions with rapid dip angle variations. The
wavefield blow-up disappeared. (c) Wavefield snapshot
from equation 11. The remaining instabilities are caused by
ringing effects. (d) A stable wavefield snapshot is achieved
using equation 11 with a band pass filter applied to the
wavenumber operators kx and kz.
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Figure 4: TTI RTM images of the partial BP model. (a) is
corresponding to the solution of the TTI coupled equations,
and (b) is achieved by solving the pure P wave equation.

Summary and Conclusions

The conventional TTI coupled equations lead to instability
in general TTI media. Starting with the exact dispersion
relation, a pseudo-differential equation for the P wave
component in an acoustic 2D TTI media is derived. SV
wavefront triplication is successfully removed. Numerical
examples show that modeling and migration using the
new equation provides a stable P wave propagation with
any anisotropic parameter values. The REM is adopted
in the numerical implementation and it provides accurate
and nondispersive wave propagation. We conclude that
a stable TTI RTM is achievable with the pure P wave
equation proposed here, and an implementation with REM
provides high quality TTI RTM images.

Appendix: Rapid expansion method (REM)

The solution of equation 11 is given by

p(t +∆t) =−p(t−∆t)+2cos(L∆t)p(t), (12)

where pseudo-differential operator L is defined as
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An efficient orthogonal polynomial series expansion for the
cosine function in equation 12 was presented by Tal-Ezer
et al. (1987)
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where C2k = 1 for k = 0 and C2k = 2 for k > 0. R is chosen
as the largest eigenvalue of L2. J2k is the Bessel function
of the first kind order and Q2k are the modified Chebyshev
polynomials that satisfy the following recurrence relations
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Here, I is the identity matrix.

For 2D isotropic wave propagation, the value of R is given
by R = πVmax

√
1/∆x2 +1/∆z2, where Vmax is the highest P

wave velocity in the grid. For anisotropic case, Vmax should
be replaced by Vmax(1 + |ε|max) and |ε|max is the maximum
absolute value from the ε model.

The summation in equation 14 is known to converge
exponentially for M > R∆t, therefore the summation can be
safely truncated using a value of M slightly greater than
R∆t. Pestana and Stoffa (2010) have demonstrated that
when M = 1, which means only two terms are kept in the
summation, this approximation of the cosine function using
the Chebyshev polynomials results in the 2nd-order in time
finite-difference scheme. When M = 2, the L4 operator
term is included, this approximation is equivalent to the 4th-
order finite-different scheme proposed by Dablain (1986)
and Etgen (1986).
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