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Abstract  

 
When dealing with reservoir characterization using 
seismic, whatever the algorithm used for inverting the 
seismic data into reservoir properties, one has to deal 
with the fact that the reservoir properties varies in space 
in a way that is controlled by the structural features of the 
reservoir.  
There are basically two ways to deal with this kind of non 
stationarity of the reservoir properties: 
1/ steer the inversion algorithm with a number of moving 
parameters taking the structural features into account at a 
local scale 
2/ work on the coordinate system to handle the structural 
non stationarity The paper shows that only the structural 
anamorphosis of the coordinate system opens the way to 
a correct implementation of local stationary models   
In other words working with moving steering of algorithms 
will create artifacts as soon as the ranges of reservoir 
property variations become larger than structural ranges. 

An example taken from actual seismic attribute 
processing illustrates the case. 

 

Introduction 

The use probabilistic models [1], [6], [7], [8] represent a 
good alternative to classical filtering methods and more 
generally in reservoir characterization (or seismic 
inversion) [9]. The main advantage of these models is the 
fact that they provide a best linear estimation of the signal 
and its uncertainty. Implementation of these models in 
seismic image processing (filtering, noise attenuation, de-
convolution, stochastic seismic inversion) is conditioned 
by the structure of the geology. In general the application 
of these models requires some conditions such as local 
stationarity which is characterized by the covariance 
model. Usually this can be reached by partionning the 
seismic image in homogenous regions (layers) in which 
the statistical parameters can be considered stationary. 
However this partitioning need a prior geological model 
which in the early stage of the processing is not yet 
available. For dealing with this difficulty, geostatistical 
algorithms are extended in order to integrate the local 
variation of geostatistical parameters or more precisely 
the variogram parameters are estimated at each location 
and then used to build the local estimator (kriging) [2], [3], 

[4]. From theoretical point of view these models are 
absolutely valid but the main problem remains in the 
definition of the covariance (variogram) parameters. We 
will illustrate by a simple example that the structural 
(geometrical) control or the varying anisotropy can not be 
modeled by  a simple mapping of the angles (dip, 
azimuth) but needs a more accurate local geometrical 
transformation based at least on a roughly defined 
geometrical structure.  

 

Probabilistic Model 
 
Mainly a kriging based probabilistic model is defined as a 
linear estimation (1) of a given Regionalized Variable 
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By minimizing the variance of estimation (2) we obtain the 
kriging system (3).   
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The functions: ),( jilhs ppC , and ),( 0 jrhs ppC  represents 

the covariance two point functions and their definition 
depends of the type of kriging (factorial kriging, de-
convolution, co-kriging). For giving a more precise 
explanation, let’s take the case of factorial kriging used for 
filtering the signal from the noise of a seismic image [6]. 
In this case the ),( jilhs ppC  will present the 

covariance of signal plus noise and the ),( 0 jrhs ppC  the 

covariance of the signal. By solving the system (3) we 
obtain the estimated value and kriging variance of 
estimation (4): 
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As can be observed, the kriging system id fully defined by 
the covariance functions and a given neighborhood used 
for building the estimator. The choice of covariance 
functions depends on the nature of the estimated variable 
but also on the mathematical constraint which limits this 



Local Stationary Modeling for Reservoir Characterization 
 ________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________  

Twelfth International Congress of the Brazilian Geophysical Society 

2 
choice only to the positive definite class of functions in 
order to insure the fact that the estimated variance has to 
be positive [1].  

An other observation is the fact that the kriging is a local 
estimator so if we have the possibility to define a 
covariance function with locally varying parameters we 
can model spatial variables with a high degree of 
complexity conditioned by the geological structure. 

The simplest way for doing that is to define a local 
stationary covariance model (5) in which the parameters 
such as range or anisotropy angles and are modeled as a 
functions of the location of the estimation point [3], [4]: 

( ))(),(,,),( 00 pprppCppC jiji α=  (5) 

The use of this kind of covariance model is simple to 
implement but in some practical applications this is not 
sufficient for handling high oscillations of the geometry 
and long range continuity of estimated variable. This is 
often the case of seismic images. The reflectors must 
have a large extension (long correlation range of the 
signal) but a short range correlation of the geometry. 

For dealing with this difficulty some improvements are 
proposed [2] based on the computation of a non-Euclidian 
distance which is more accurate but in practical 
applications with large seismic images this method has a 
very important computing cost. 

One other way which provides a more efficient covariance 
definition is the use of local geometrical transformation 
[6]. 
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The geometrical transformation function (6) is defined 
locally using local geometry of the horizons.  
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These horizons don’t have to be fully defined as usually in 
a numerical geological model but by a simple automatic 
segmentation processing [5]. 

Synthetic Example 
 
Local definition of the covariance (variogram) parameters 
such as range sill and anisotropy provides a flexibility for 
modeling random fields witch the spatial characteristics 
are not stationary.  In the practice one simple way for 
modeling this stationarity is the partitioning of the 
estimation domain in several units (layers, regions) in 
which spatial characteristics (variogram parameters) are 
assumed to be stationary. However, in many situations 
this partitioning is not appropriate du to the fact that these 
parameters can change gradually and the definition of 
homogeneous regions can’t be possible.  The simple way 
to deal with these situations is to realize first an 
estimation of these parameters in space and then define 
a local covariance (variogram). For a parameter such 
local sill this can be done easily without any theoretical 
difficulty but for the parameters such ranges and 
anisotropy that can be more critical.  

For illustrating this, let’s take a simple synthetic example. 
In the figure 1  is presented a simple area (100x100  
units) where a Gaussian Random Field (GRF) is defined 
in a way that the fluctuations in space follows an 
alignment controlled by two oscillating curves.   

 
Figure 1 (a) Example of a Conditional Random Gaussian 

Field generated with Sequential Gaussian Simulation 
algorithm: a) Conditional data and structural lines 

 
 Two vertically aligned dots represent the data samples 
where this GRF is known. The variogram is defined as a 
Cubic type with a “horizontal” range equal to 30 and the 
vertical range equal to 5 units.  The algorithm used for 
generating a realization of this Conditional Gaussian 
Random Field is the Sequential Gaussian Simulation 
(SGS). The advantage of this algorithm is the fact that 
any grid node is simulated by applying a local kriging 
using a local neighborhood with a locally defined 
covariance. The image figure 1 (b) shows one realization 
of this Gaussian Random Field using a local covariance 
with a varying azimuth. As you can observe, the behavior 
of the GRF is almost controlled by the geometry 
(structure) but some artifacts are visible here because the 
variation of the geometry is much higher than the 
fluctuations of the property. These artifacts are more 
important when the wavelength (range) of geometrical 
oscillations (structure) is lower than the range of GRV. 

 
Figure 1 (b) Example of a Conditional Random Gaussian 

Field generated with Sequential Gaussian Simulation 
algorithm: b) Simulated field realized using local varying 

angle 
 The image in the figure 1 (c) shows the same GRF 
realized with the same algorithm but the only difference is 
the way how the local covariance is defined. Instead of 
using a local azimuth which remains constant for all 
points in the local neighborhood a local geometrical 
transformation function is defined in order to apply a local 
“deformation” of the geometry. The distance between 
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points in the neighborhood is not Euclidian in the real 
space but in the transformed domain. 

 

 
Figure 1 (c) Example of a Conditional Random Gaussian 
Field generated with Sequential Gaussian Simulation 
algorithm: c) Simulated field realized using structural 
coordinate’s transformation. 

 

Applications on Real Data 

One of most difficult aspects of application of kriging 
operators for seismic image filtering is the geometrical (or 
structural) control. In the early stage of the processing the 
structural model is not yet available so the only way for 
defining the geometry is the seismic image itself. A simple 
way for extracting the structure is the application of 
automatic segmentation techniques which provides a 
partial but fast and sufficient layering behavior of 
geological structure Figure 2 (a, b) [5]. 

 

 
Figure 2 Example of automatic segmentation: (a) 
amplitude seismic cube, (b) resulting labels 
corresponding to the maxima of amplitude ([5], Sandjivy L., 
Faucon T., 2007).  

The automatic segmentation (Figure 3) can be used for 
computing the structure consistent variogram parameters 

and in the same time for defining the local geometry 
transformation (Figure 4). 

 
Figure 3 Post stack seismic amplitude 3D cube and an 

automatically detected reflector.  
 

 
Figure 4 Geometrical transformation of neighborhood 
search window in function of the shape of interpreted 
horizon. 

This local geometrical transformation is defined by a 
simple vertical shift computed using upper and lower 
segmented “horizons”. The neighborhood window is then 
deformed in time space in order to respect the layering 
but without doing any interpolation or re-sampling of the 
original image.  

 

 
Figure 5.Comparaison of raw amplitude (a) and filtered 
amplitude (b) using factorial kriging with structural control. 
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Conclusions 

Application of probabilistic models in seismic data 
processing or inversion needs a better structural control 
based on the geometry of the geological structure. In the 
early stages of the processing of seismic images this 
structure is not necessary modeled yet so the 
implementation of kriging based algorithms needs a better 
geometrical control based not only in the locally varying 
covariance parameters but also on an appropriate 
geometrical transformation. In this paper we illustrate the 
artifacts introduced if this structural transformation 
(anamorphosys) is not considered. By associating 
automatic segmentation techniques, local geometrical 
transformations and classical kriging based algorithms the 
obtained results are more reliable respecting in such way 
the internal structure of estimated geological variable.   
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