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Abstract 
 
This paper presents two-point ray tracing algorithm in 
anisotropic media and in isotropic media with salt 
intrusions of complicated interfaces. The main peculiarity 
of this approach is the use of finite difference solutions of 
Eikonal equation. The traditional ways of two point ray 
tracing are shooting and bending (Peryra V., Lee W.H.K., 
Keller H.B., 1980).  In comparison to these well-known 
approaches the proposed algorithm is more stable and 
computationally cheaper.  
 
This approach is extremely effective as two point ray 
tracing method for specific acquisition geometries widely 
used for 3D Offset and Walk-away VSP. Really, for this 
statements a moderate number of receivers (a few tens 
usually) are used, so one should apply nonlinear eikonal 
solver for a few ten times as well. Another important 
advantage is the fact that time of computations does not 
depend on the complexity of a model.  
 
In order to illustrate the range of applicability we present 
numerical results for anisotropic Gullfaks model and in 
well known Sigsbee2a model that contains salt body with 
very rough interface. The experiments demonstrate the 
approach provides stable two point ray tracing algorithm 
for a medium with complex geology in a presence of 
anisotropy layers and salt intrusions. Numerical 
experiments prove that the method finds a ray for any 
source/receiver pair in a presence of anisotropy and salt 
intrusions. The last property is really important in many 
applications. 

 

Introduction 
 
Nowadays two-point ray tracing is widely used in many 
ray based seismic application (for example, ray based 
tomography). Efficient solution of this problem is a 
challenge in anisotropic media and in media containing 
salt bodies. A natural way to solve two point ray tracing 
problem is shooting method. The essence of shooting 
methods is repeated solution of the Cauchy problem for 
the source while ray does not hit receiver (Peryra V., Lee 
W.H.K., Keller H.B., 1980). Poor stability in environments 
with large speed contrasts, but also in the presence of 
anisotropy, and the large computational costs do not 
allow the application of those algorithms for two-point ray 

tracing in complex media (Thurber, Kissling, 2000). More 
widespread methods are ray bending methods. They 
allow to select geometry of ray for a fixed pair of source-
receiver by minimizing the travel time between them 
(Moser et.al., 1992). These methods are more stable than 
shooting methods in a presence of high contrasts. But in 
a sense of computational time they may cost much in 
complex media with salt bodies and in media containing 
anisotropic layers.  
 
On the other hand if we talk about solving the eikonal 
equation then the finite difference methods (Sethian, J.A., 
1996, Qian, J., and Symes, W., 2002) of this equation do 
not have such problems as existing methods of two-point 
tracing. Mathematical justification of the numerical 
solution of the eikonal equation using finite-difference 
scheme is given in the paper of French mathematician 
Lions (1982). He shows that generalized solution is stable 
with respect to the parameters of the medium, source 
position, etc. It can be found by using the finite-difference 
schemes. The results of the Lions (1982) refer to the 
isotropic case. But it is also shown (see for example Qian, 
J., and Symes, W., 2002) that the eikonal equation can be 
solved using the finite-difference scheme describing the 
propagation of quasi-longitudinal waves in anisotropic 
media.  
 
As mentioned above, finite difference methods for solving 
the eikonal equation devoid of the shortcomings of 
existing two-point ray tracing methods. Therefore it is 
natural to use these methods for solving the eikonal 
equation. After we solve eikonal equation by the finite 
difference scheme we have spatial time derivatives. The 
key of our approach is to use those spatial time 
derivatives when we solve two-point ray tracing problem. 
This allows us to solve Cauchy problem in order to solve 
two-point ray tracing problem. Solving Cauchy problem is 
more stable and easy than solving the boundary value 
problem. Therefore this approach provides 
computationally stable and cheap two-point ray tracing 
algorithm in environments with high contrast and in the 
presence of anisotropy. 

 

Method 
 
The first stage of the proposed two-point ray tracing 
algorithm is solving the eikonal equation by the finite 
difference (FD) algorithm: 
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work we consider P – waves in isotropic media and qP – 
waves in transversal isotropic media. 
 
There are two classes of FD eikonal solvers: point 
expanding algorithms and box expanding methods. Point 
expanding methods propagate time field in all directions 
from the given source point. Usually point expanding 
schemes are based on upwind first order finite difference 
eikonal approximation and special recount algorithm (Van 
Trier J. and Symes W.W. 1991). The most popular is Fast 
Marching Method (FMM) proposed by (Sethian J.A., 
1996) being based on Dijkstra’s algorithm (Dijkstra 
E.W.,1959). Fast marching method is of the first order 
and requires operations to compute time 

field in grid points. This method is applicable 
practically in any complex isotropic velocity model, in 
particular it computes travel times in high contrast models 
with salt bodies. The essential drawback is that FMM 
doesn’t work in anisotropic media. 

( ln )O N N
N

 
Box expanding methods continue time field, preset on the 
surface, to the depth. The eikonal equation is rewritten in 
the form:  

)).,,(,,( zyxVH yxz τττ =     (2) 

The gradient of the travel time field τ= ∇p  is not 
continuous in the general case. The modern approach is 
to approximate right and left horizontal spatial derivatives 

,x yτ ±  by using so called essentially non - oscillating (ENO) 

or weighted essentially non - oscillating (WENO) 
approximations. And then by using Godunov’s like flux 
function to solve Riemann problem and to get the values 

,x yτ  for the equation (2) (Qian and Symes, 2002). Then 

equation (2) is integrated by Runge-Kutta (RK) methods. 
ENO-WENO RK finite-difference schemes may be up to 
the forth order and they require operations. They 
can be modified for transversal isotropic media (Qian and 
Symes, 2002) as well. Unfortunately, this approach is 
suitable only for computations of travel times 
corresponding to down-going rays. To avoid this limitation 
one may change from time to time the “computing” 
direction from vertical to horizontal. Such algorithm is 
called “Down and Out” (DNO) and is proposed in (Kim 
and Cook, 1999). Unfortunately DNO doesn’t work when 
rays change their directions from down going to up going 
many times. 
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Formally two-point ray tracing is a boundary value 
problem for the system of ordinary differential equations:  
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Function ),( pxH  is known as the Hamilton-Jacobi 
function. In complex media solution of this problem is 
often unstable and the existing methods do not converge 
frequently.  

We propose an approach that reduces the boundary 
value problem (3) to the Cauchy problem by using finite-
difference solutions of the eikonal equation. Let us 
present this approach in more details.  
 
After calculations of travel times at each grid point by the 
mentioned bove finite-difference schemes the vector 
fields 

a
)(xτ∇ is computed as well. This means that at the 

same grid points the phase velocity vector ),( zxqpV ττ  

is known also. After that we can recover the derivatives 
τ∇≡p at any point in the medium by using bilinear 

interpolation for each elementary grid triangle. Thus in the 
problem (3) the second equation is already solved (we 
know vector p  everywhere!). It remains to "extract" the 
information directly about the ray, that is  to solve the 
following Cauchy problem: 
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For a transversely isotropic medium the system of 

equations (4) as follows: 
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Results 
 
We present now the results of numerical experiments 
implemented for two fairly well known realistic models. 
The first model is Gullfaks model. Fig.1 shows the wave 
fronts being simulated in this model by the WENO-RK3 
method. In Fig.2 there are shown the rays in isotropic and 
anisotropic versions of the Gullfaks model. They are 
calculated on the basis of constructed fronts. In Fig.2 gray 
colour denotes the anisotropic layers. Anisotropy 
parameters in the upper layer are such that 

05.0,05.0 == δε  while in the lower layer: 
15.0,20.0 == δε . These experiments were designed to 

demonstrate the applicability and feasibility of the 
proposed approach in anisotropic media and isotropic 
media with salt intrusions with intricate form. It should be 
emphasized that the cost of this approach is the same for 
both isotropic and anisotropic media. In the case of 
application of shooting or bending the computations in 
anisotropic media are much more expensive in 
comparison with isotropic ones.  
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Fig.1 Fronts calculated by WENORK3 in the isotropic 
Gullfaks model. 
 

 
Fig.2 Rays computed by the presented approach for 
isotropic (red) anisotropic (blue) Gullfaks model. 
 
In order to estimate advantages of presented approach 
for two-point ray tracing let us consider Fig.3. We present 
there two types of the rays: 
1) Black rays – computed with the approach presented 
above based on the using of “precomputed” vector p , 
that is by numerical resolution of equations (4); as one 
can these rays connect source and receivers in almost 
perfect way; 
2) Red rays – computed with the standard backward 
propagation of the ray from receivers to a source by 
numerical resolution of equation (3); there is obvious 
deviation of rays from the target due to error 
accumulation.  
 
Our conclusion is that the proposed approach yields a 
stable solution whereas shooting method shows a very 
high sensitivity to the initial direction. 
 

a)  

b)  
 
Fig.3 Rays computed on the basis of the calculated fronts 
(black) and rays that are computed by shooting method 
(red) in the anisotropic model Gullfaks (a) and the same, 
but zoomed view in the source vicinity (b). 
 
Another model is Sigsbee2a that contains water layer 
sediments and salt inclusion which is a stumbling block 
for tracing algorithms. Figure 4 displays the rays that are 
computed by solving the Cauchy problem using the 
calculated fronts before. It has to be emphasized that the 
results obtained in this way (the rays) correspond to 
waves that give the first arrivals. However please pay 
attention to the behaviour of rays in a given situation. 
After passing through the salt all the rays are 
concentrated together in a very narrow neighbourhood of 
a single ray. The size of this vicinity is close to the 
machine precision. So many of these rays will not be 
available for the calculation by the shooting type of 
methods. The proposed method calculates all these rays 
and their computational time cost is practically the same 
for every ray. 

 
 
Fig.4 Two-point ray tracing on the basis of the calculated 
fronts in the model Sigsbee2a. 
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Conclusions 
 
We have proposed and tested a novel approach to the 
problem of two-point ray-tracing. In this approach the 
boundary value problem for ordinary differential equations 
is reduced to the Cauchy problem. This is achieved 
through the use of pre-calculated wave fronts, i.e. rays 
are actually in some sense "extracted" from the vector 
field being a final finite-difference solution of the eikonal 
equation. The key point in the proposed approach is 
application of finite-difference schemes for resolution of 
the eikonal equation. For an isotropic medium there are 
quite efficient algorithms, in particular fast-marching 
method. As far as to anisotropic media is concerned we 
developed finite-difference schemes of Godunov's type 
and have used them successfully. 
 
Until now poor stability and high computational costs do 
not allow the full application of traditional algorithms for 
two-point ray-tracing in complex environments. 
Particularly it is difficult to implement a two-point ray-
tracing through the salt either in the presence of 
anisotropy. The proposed method allows us to find 
consistently the rays corresponding to the first arrivals 
into complex anisotropic media containing high-contrast 
boundaries. Very important aspect of this approach is the 
fact that computation time does not depend on the 
complexity of the model. Described above results allows 
us to hope that the proposed method will provide 
additional benefits to those applications in which you want 
to do a two point tracing. In its own turn this procedure is 
the engine for tomographic inversion providing valuable 
information about velocity model. 

 

Acknowledgments 
 
Authors are grateful to V.A. Tcheverda for helpful 
discussions and comments. The research described is 
done under financial support of RFBR, grants # 10-05-
00233, 11-05-00238, 11-05-0947 and integration projects 
of SB RAS # 19 and 26. Authors thank StatoilHydro for 
Gullfaks velocity model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

References 
 
Dijkstra E.W. A note on two problems in connexion with 
graphs. 1959.Numerische Mathematik. n.1. P.269-271. 
 
Kim., S., and Cook, R., 1999, 3-D traveltime computation 
using second-order ENO scheme. Geophysics, V.277., 
n.1., P.147-155. 
 
Lions, P., 1982, Generalized solutions of Hamilton-Jacobi 
equations: Research notes in mathematics, 69. 
 
Moser, T., Nolet, G., and Snieder, R., 1992, Ray bending 
revisited. Bull. Seismol. Soc. Am., 82, 259–288. 
 
Peryra, V., Lee, W.H.K., Keller, H.B., 1980. Solving two-
point seismic-ray tracing problems in a heterogeneous 
medium. Bull. Serismol. Soc. Am., V.70., P.79-99. 
 
Qian, J., and Symes, W., 2002, Finite-difference quasi-P 
traveltimes for anisotropic media. Geophysics, V.277., 
n.1., P.147-155. 
 
Sethian, J.A., 1996, Fast marching level set method for 
monotonically advancing fronts. Proc. Natl. Acad. Sci. 
USA, V.93., P.1592-1595. 
 
Thurber, C., and Kissling, E., 2000, Advances in travel 
time calculations for 3-D structures: ”Advances in seismic 
event location”, Kluwer Academic Publishers, 71–99. 
 
Van Trier, J., and Symes, W.W., 1991, Upwind finite-
difference calculation of traveltimes. Geophysics, V.56., 
P.812-821. 
 
 

Twelfth International Congress of the Brazilian Geophysical Society 


