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Abstract

Within the seismic method, in order to obtain an
accurate seismic image, it is necessary to use
some processing techniques, such as the seismic
migration. The reverse time migration (RTM) is
considered the most accurate migration technique,
although its application is restricted due to the
enormous computational effort required. Trying
to balance the processing cost with the image’s
quality and confiability, several numeric methods are
used to perform the migration. This work presents
two different ways of performing the reverse time
migration using the complete wave equation: RTM
by interpolation and RTM by the pseudo-analytical
method. The first migrates the data with different
constant velocities and interpolate the results. The
second uses modifications in the spacial derivatives in
order to compensate errors from the second order time
derivatives approximation. The methods applicability
was tested by the migration of a bidimensional pre-
and pos-stack synthetic data. A real pre-stack data
was migrated successfully and is also presented.

Introduction

Since the seismic method entered the digital era, several
migration methods have been developed aiming to produce
the most accurate subsurface image with the least
computational cost. The reverse time migration (RTM)
introduced by Whitmore (1983), McMechan (1983), Baysal
et al (1983) and Faria (1986) is considered the most
accurate migration method. However, its use has been
restricted due to the high computational cost required.

The reverse time migration uses the complete wave
equation to march from the moment the seismic data is
registered on the surface to previous times until the initial
time, when the image from the geology by where the
seismic wave passed through is reconstructed.

Several strategies can be used to solve the complete wave
equation. The proposition of method for that is the core
of this work, in which are presented two ways to deal with
the equation, the RTM by interpolation and by the pseudo-
analytical method.

In the RTM by interpolation, the pressure field interpolation
is done considering a certain quantity of constant velocities
chose using the procedure proposed by Bagaini et al

(1995). After that, the interpolation is done introducing a
weight function calculated according to the velocity field.

The RTM by the pseudo-analytical method (Etgen et al.,
2009) does a modification in the spatial derivatives in
order to compensate the errors of the second order time
derivative approximation by finite differences. This scheme
is widely applied to solve the time derivatives but it is
known that it can introduce numerical errors even when
accurate spacial operators are used. The modified spacial
derivatives form a pseudo-differential operator which is
simplified assuming a constant velocity medium. In this
way, it is easily calculated in the wavenumber domain.

The methods validation is done by the migration of
synthetic pre- and pos-stack data. A real pre-stack dataset
from Gulf of Mexico is also migrated and presented.

Exact solution of the wave equation

Given the constant density wave equation:

∂ 2P
∂x2 +

∂ 2P
∂y2 +

∂ 2P
∂ z2 −

1
v(x)2

∂ 2P
∂ t2 = 0 (1)

where P = P(x,y,z, t) is the pressure field and v = v(x,y,z) is
the medium velocity. To evaluate the Eq. (1) analytically in
function of time, it should be rewritten as:

∂ 2P(x, t)
∂ t2 = v2(x)

(
∂ 2

∂x2 +
∂ 2

∂y2 +
∂ 2

∂ z2

)
P(x, t) (2)

where the position vector is defined by (x) = (x,y,z) so the
propagation velocity is given by v(x) and the pressure field
expressed by P(x, t).

Following the deduction presented by Pestana and
Stoffa (2009), an operator can be defined calling
v2(x)

(
∂ 2

∂x2 + ∂ 2

∂y2 + ∂ 2

∂ z2

)
=−L2, and obtaining the differential

equation below:

∂ 2P(x, t)
∂ t2 =−L2P(x, t) (3)

Given the initial conditions P(x, t = 0) = P0 and ∂P(x,t)
∂ t |t=0 =

Ṗ0, it follows that:

P(t) = P0 cos(Lt)+
sin(Lt)

L
Ṗ0 (4)

Using the solution in Eq.(4), the fields P(t + ∆t) e P(t−∆t)
can be evaluated. Summing then and using trigonometric
relations, it follows that:

P(x, t +∆t)+P(x, t−∆t) = 2cos(L∆t)P(x, t) (5)

Twelfth International Congress of The Brazilian Geophysical Society



REVERSE TIME MIGRATION BY INTERPOLATION AND PSEUDO-ANALYTICAL METHOD 2

Isolating the left side terms of the Eq.(5), the time
extrapolation of the wave field can be done; that results
in direct modeling or reverse time migration, depending on
the way the extrapolation is done in time.

RTM by interpolation

The central idea of this method is to use a solution for the
complete wave equation with a constant velocity field in the
time extrapolation, and then doing an interpolation based
on the true velocity field.

After a Fourier transform, the time marching of the
wavefield is done by different velocities on the wavenumber
domain, and then interpolated back on the space
domain. In this way, the method is a Fourier migration
to the complete wave equation with variable velocities
conceptually similar to the phase-shift plus interpolation
(PSPI) method, commonly used with the unidirectional
equation.

The spacial derivatives of the wave equation are computed
implicitilly on the Fourier domain not suffering from
dispersion problems in high frequencies, which occurs
in a finite differences scheme. This procedure permits
bigger steps in time without causing trouble to the stability
condition, which implies in less computational cost.

Departing from Eq.(3) and following the procedures in
Raymond (1991), we can define a pseudo-differential
operator to the jth derivative of P in relation to t, which is
given by:

∂
j

t P≈ 1
(2π)3

∫
∞

−∞

[iL(x,k)] j
ϕ(k)ei(k·x)dk (6)

where k = (kx,ky,kz) is the wavenumber vector
correspondent to x and ϕ(k) is defined by the equation:

ϕ(k) =
∫

∞

−∞

P(x)e−i(k·x)dx (7)

The Taylor series expansion of the wavefield P(x, t + ∆t)
around a known field P(x, t) is given by:

P(x, t +∆t) = P(x, t)+
∞

∑
j=1

∂
j

t P(x, t)
j!

(∆t) j (8)

where the j denotes the jth time derivative.

Rewriting Eq. (8) and inserting Eq. (6) in it, results:

P(x, t +∆t) = P(x, t)+

+∑
∞
j=1

∆t j

j!

[
1

(2π)3
∫

∞

−∞
[iL(x,k)] j

ϕ(k)ei(k·x)dk
]

(9)

It’s known that the Taylor series expansion of the
exponential function ex is given by ex = ∑

∞
j=0

x j

j! . Using
this relation and expanding the sum in Eq.(9), it can be
observed that the field P(x, t +∆t) can be written as:

P(x, t +∆t) =
1

(2π)3

∫
∞

−∞

e[iL(x,k)∆t]
ϕ(k)ei(k·x)dk (10)

Evaluating and summing the fields P(x, t + ∆t) and P(x, t−
∆t) according to the solution viewed in Eq. (10):

P(x, t +∆t)+P(x, t−∆t) =
1

(2π)3
∫

∞

−∞
ϕ(k, t)ei(k·x)

[
eiL(x,k)∆t + e−iL(x,k)∆t

]
dk (11)

or:
P(x, t +∆t)+P(x, t−∆t) =

1
(2π)3

∫
∞

−∞
ϕ(k, t)·2cos [L(x,k)∆t]ei(k·x)dk (12)

In the constant velocity case, Eqs. (12) and (5) are exactly
the same solution to the acoustic wave equation. And it
is worth point that the pseudo-differential operator L(x) =
v(x)
√
−∇2 in the space domain, when represented in the

wavenumber domain, has the following form:

L(x,k) = v(x)
√

k2
x + k2

y + k2
z (13)

which is exactly the same pseudo-differential operator
derived in Zhang and Zhang (2009).

It can be notice that the time extrapolation is done by
the multiplication of the spatial Fourier transformed of the
wavefield by a cosine function whose argument depends
on the wavenumber and velocity. In this way, the procedure
can be interpreted as a spatial phase change applied in the
Fourier domain.

The cosine function can be approximated by a series of two
separable terms:

2 cos[L(x,k)∆t]≈
n

∑
j=0

a j(x)b j(k) (14)

where n is the number of terms, a j(x) and b j(k) are
real functions depending on the separated terms x e k
respectively.

Thus, the Eq. (12) can be rewritten:

P(x, t +∆t)+P(x, t−∆t)≈

∑
n
j=0 a j(x)

1
(2π)3

∫
∞

−∞
ϕ(k, t)b j(k)ei(k·x)dk (15)

In the solution given by Eq. (15), the terms a j are weight
functions for each of the reference velocities (a j(v(x)))
and are computed using the optimal reference velocities.
To find that velocities, it has been used the procedure
proposed by Bagaini et al (1995) in which the reference
velocities (v1,v2,...,vn) are computed using the velocity
distribution entropy criteria in the [vm,vM ] interval, where
vm is the minimum velocity of the whole field and vM is
the maximum velocity. The terms b j are given by b j(k) =

cos(vn

√
k2

x + k2
y + k2

z ∆t) for each step of the time march.

Lastly, the migration procedure can be seen as:

P(x, t−∆t) = P(x, t +∆t)+
n

∑
j=0

a j(x)FFT−1b j(k)FFT P(x, t)

(16)

From Eq.(16) it can be noticed that, for each step of the
time march, the method requires a fast Fourier transform
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(FFT ) and n inverse Fourier transform (FFT−1). In order
words, the computational cost to obtain P(x, t − ∆t) is
proportional to the number of fast Fourier transforms, which
is related with the quantity of reference velocities (v j ’s).

RTM by the pseudo-analytical method

Numerical methods that use a second order time
approximation to solve the derivatives usually introduce
errors in its discretization, even if very accurate methods
to solve the spacial derivatives are used. To solve this
question, it is common the use of higher order time
approximations or optimized methods.

The pseudo-analytical method (Etgen et at., 2009; Pestana
et al., 2010) instead of searching for more precise
approximations for the time derivatives, does a modification
on the spatial derivatives to compensate the errors caused
by the second order time approximation. The modified
spatial derivatives form a pseudo-differential operator.

To compute the operator in an efficient way, the pseudo-
analytical method simplifies it assuming a constant velocity
medium, which results in a formula that can be calculated
in the wavenumber domain. The combination of diverse
operators for different constant velocities leads to a variable
velocity migration.

Starting at Eq. (5), it is summed −2P(x, t) to both sides of
the equation:

P(x, t +∆t)−2P(x, t)+P(x, t−∆t) = 2 [cos(L∆t)−1]P(x, t)
(17)

Rewriting it in a more convenient way and in a form similar
to the second order finite difference time derivative:

P(x, t +∆t)−2P(x, t)+P(x, t−∆t)
∆t2 =

v2(x)
2 [cos(L∆t)−1]P(x, t)

v2(x)∆t2

(18)

Using the second order Taylor expansion of the time
derivative seen in Eq. (3), comparing to Eq. (18) and
considering a constant velocity (v0), a pseudo-Laplacian
operator F(K) is defined:

F(K) =
2[cos(L0∆t)−1]

v2
0∆t2 ≈ 2

v2
0∆t2

[
− (L0∆t)2

2
+

(L0∆t)4

24
− ...

]
(19)

Reminding that L2
0 = −v2

0∇2 and K =
√
−∇2, the operator

F(K) can be rewritten according to the equation below:

F(K)≈−K2 +
v2

0∆t2

12
K4− ... (20)

It can be noticed that the operator F(K) is exactly the
Fourier transform of the Laplacian operator −K2 when the
time interval ∆t tend to zero. Thus, the velocity v0 that
appears in the higher terms is seen as a compensation
velocity which is constant to each pseudo-Laplacian
operator. The pseudo-analytical method introduced by
Etgen e Brandsberg-Dahl (2009) is here called the zeroth
order approximation and is given by the following equation:

P(x, t +∆t)−2P(x, t)+P(x, t−∆t) = v(x)2
∆t2F(K)P(x, t)

(21)

As the operator F(K) varies little with v0, it can be used
the combination of several pseudo-Laplacian operators to
better accommodate the velocity variations.

Applying the Taylor series expansion in Eq. (18), the
wavefield propagation equation can be rewritten:

P(x, t +∆t)−2P(x, t)+P(x, t−∆t)=−(L∆t)2P(x, t)+O(v∆tK)
(22)

where O(v∆tK) represents the terms with higher order time
derivatives of P(x, t).

Replacing Eq. (5) on Eq. (22):

O(v∆tK) = 2
[

cos(L∆t)−1+
(L∆t)2

2

]
P(x, t) (23)

With the value of O(v∆tK) obtained in Eq. (23), Eq. (22)
can be used to derive the second order pseudo-analytical
method expression:

P(x, t +∆t)−2P(x, t)+P(x, t−∆t) =
−(L∆t)2P(x, t)+F2(K)P(x, t) (24)

where the second order pseudo-Laplacian operator F2(K)
is given by the expression:

F2(K) =
2

(v0∆t)4

[
cos(L0∆t)−1+

(L0∆t)2

2

]
(25)

It can be noticed that the first term on the right side of the
Eq. (24) is exactly the pseudo-spectral method expression
approximated by a second order time derivative. The
second term acts as a correction term.

Obviously, if evaluated in the time domain, the Eq. (24)
would be written as:

P(x, t +∆t)−2P(x, t)+P(x, t−∆t) =
−(v∆t)2∇2P(x, t)+FFT−1F2(K)FFT P(x, t) (26)

With the same technique used in the second order
approximation, the pseudo-analitycal fourth order
approximation can be derived. The migration expression
follows:

P(x, t +∆t)−2P(x, t)+P(x, t−∆t) =

−(L∆t)2P(x, t)+
1
12

(L∆t)4P(x, t)+(L∆t)6F4(K)P(x, t)

(27)

where F4 is the pseudo-Laplacian operator given by:

F4(K) =
2

(v0∆t)6

[
cos(L∆t)−1+

(L∆t)2

2
− (L∆t)4

24

]
(28)

Results

In order to test the applicability of the proposed methods,
synthetic bidimensional pre- and pos-stack data were
migrated. Besides that, the migration of a real pre-stack
data was also performed.

To perform the pos-stack migration, it was used the salt
dome model from SEG/EAEG of which velocity field is
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showed in Figure 1 and the migration parameter in Table
1. For poststack seismic data, RTM is performed by
pushing the recorded wavefield backward in time into the
subsurface with half of the velocity of the medium. At
time t=0, the image time, the back propagated recorded
wavefield is captured to construct the image.

Figure 1: Salt dome SEG/EAGE model velocity field.

∆x 12,19 m
∆z 12,19 m

vmin 1,524 km/s
vmax 4,480 km/s

Table 1: Salt dome SEG/EAGE model parameters.

Figure 2 shows the result of the RTM by interpolation
using 15 different velocities and Figure 3 the RTM result
by the pseudo-analitycal method with a fourth order
approximation of the pseudo-Laplacian operator with v0 =
vmin. Both results were obtained with the dataset with time
sample interval of ∆t = 0,004s.

Figure 2: Migrated salt dome SEG/EAGE dataset using the
RTM by interpolation with 15 velocities.

The pre-stack migration was tested applying it to the
Marmousi model. The image condition considered
is the crosscorrelation between the descending and
ascending wavefields, created by the sources and
receivers respectively. The model’s velocity field is
presented on Figure 4 while the parameters can be seen
on Table 2.

The migrated result by the interpolation method is
presented on Figure 5 while the one migrated by the

Figure 3: Migrated salt dome SEG/EAGE dataset using the
RTM by the pseudo-analitycal method with second order
approximation of the pseudo-Laplacian operator.

Figure 4: Marmousi velocity field.

∆x 25 m
∆z 8 m

fmax 35 Hz
vmin 1,5 km/s
vmax 5,5 km/s

Table 2: Marmousi model parameters

pseudo-analitycal with a second order approximation for
the pseudo-Laplacian appears on Figure 6.

At last, a 2D real line acquired at the central region of
Gulf of Mexico, in the Mississippi canyon area, has been
migrated. This is one of the most oil and gas productive
areas around the world and, according to Chowdhury and
Borton (2007), where the hydrocarbon trapping is strongly
related to the presence of salt.

The data acquisition was made by the end-on technique
with a 180 receivers in the line. It were recorded 1001
shots. The data parameters are indicated on Table 3 while
the velocity field used in the migration process appears on
Figure 7.

The result of the RTM by interpolation with 5 velocities
can be seen on Figure 8. Figure 9 shows the result
from the pseudo-analytical method using a second order
approximation of the pseudo-Laplacian operator.
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Figure 5: Marmousi migrated result by interpolation
method with 10 velocities.

Figure 6: Marmousi migrated result by pseudo-analytical
method with the pseudo-Laplacian operator second order
approximation.

Conclusions

Both methods have succeed on the migration of synthetic
and real data. The application on synthetic data
is interesting because the geological model is known
precisely and, consequently, the velocity field too. In
salt dome SEG/EAGE and Marmousi models, both
interpolation and the pseudo-analytical method could
accurately reproduce the synthetic model.

The salt dome SEG/EAGE model is characterized by
strong vertical and lateral velocity variations. For this
reason, the migration by interpolation required a greater
number of velocities to obtain a satisfactory result.
This obviously requires a greater computational expense
impairing the methods’ efficiency. In the Marmousi
model, characterized by the geological complexity, the
interpolation could be applied accurately with less

∆x 26,67 m
∆z 13,21 m

fmax 30 Hz
vmin 1,485 km/s
vmax 4,000 km/s

Table 3: Gulf of Mexico data parameters.

Figure 7: Gulf of Mexico velocity field.

Figure 8: Gulf of Mexico migrated result by interpolation
with 5 velocities.

Figure 9: Gulf of Mexico migrated result by pseudo-
analytical method using a second order approximation of
the pseudo-Laplacian operator.

velocities. The pseudo-analytical method was also well
succeeded in imaging the model and its use has been
recommended once it has a lower computational cost.

Alternatives to the presented methods can include the
use of polynomials instead of operators approximations
by Taylor series in the pseudo-Laplacian in the case
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of pseudo-analytical method. As for the interpolation,
variations in the way we distribute the velocities in the
model already exist in the literature and can be tested.

Finally, the migration of real data from the Gulf of
Mexico proved the presented methods applicability in two-
dimensional data. Its application in 3D data must still be
implemented and tested.
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