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Abstract

We revisit the problem of the 2D scattering of
electromagnetic plane waves by vertical faults to
analyse the convergent or asymptotic character as well
as the consistency in terms of even and odd functions
of a proposed solution in the form of a Neumann’s
series as an extension to the Born’s approximation. We
also address the problems faced with the extension of
the proposed solution to a simple 3D case.

Introduction

The two dimensional problem of the scattering of
electromagnetic waves by lateral contrast of conductivities
has received much attention from geophysical researchers
since the work of Sommerfeld (1896). In one of the
researches, Sampaio and Fokkema (1992) - from now on
labeled SF - proposed a solution for the scattering due
to a vertical fault, based on a recursion of a Neumann’s
series and as an extension to the Born’s approximation,
previously employed by Weaver (1963).

In that paper, some questions remained unanswered. So,
Heimer and Rijo (2001) employed numerical computation
to address the question of convergence of the series and
concluded that the solution for the field diverges when the
series exceeds the 15-th order. Subsequently, Guimarães
and Rijo (2003) proposed an alternative solution, because
they understood that the solution described by SF lacked
consistency in terms of even and odd fuctions.

We will analyse the existent problems in the adaptation of
the SF solution to a simple three dimensional model and
revisit the 2D problem to address the two issues raised by
Rijo and his associates.

Definition of the 3D problem

Let the half-space z < 0 be the air and the half-space
z > 0 consist of four homogeneous and isotropic media
separated by two vertical orthogonal faults z > 0, x = 0 and
z > 0, y = 0. To develop the solution of the problem, it will
be useful to divide the air into four equal and homogeneous
parts, labeled 1 to 4 in the counterclockwise direction. Let
also an electromagnetic plane wave to propagate in the air
in the positive z direction, with an x-oriented primary electric
vector EP

x = e−ik0z, where: i =
√−1; κ2

0 =−iµ0σ0ω , ℜ(κ0) >
0, ℑ(κ0) < 0; ω is the angular frequency; µ0 represents the

magnetic permeability, and σ0 represents the total current
conductivity of the air.

The solution of the three-dimensional Helmholtz wave
equation for the x component of the electric vector in each
one of the eight media yields:

Ex1 = EP
x +ER

x1 +ES
x1, x > 0, y > 0, z < 0,

Ex2 = EP
x +ER

x2 +ES
x2, x > 0, y < 0, z < 0,

Ex3 = EP
x +ER

x3 +ES
x3, x < 0, y < 0, z < 0,

Ex4 = EP
x +ER

x4 +ES
x4, x < 0, y > 0, z < 0,

Ex5 = ET
x5 +ES

x5, x > 0, y > 0, z > 0,

Ex6 = ET
x6 +ES

x6, x > 0, y < 0, z > 0,

Ex7 = ET
x7 +ES

x7, x < 0, y < 0, z > 0,

Ex8 = ET
x8 +ES

x8, x < 0, y > 0, z > 0, (1)

In equations 1, ER
xm, for m = 1, . . . ,4 and ET

xn, for n = 5, . . . ,8
represent, respectively, the reflected and the transmitted x
componentes of the eletric field. So

ER
xm =

√µ(m+4)σ0−√µ0σ(m+4)√µ(m+4)σ0 +
√µ0σ(m+4)

e+iκ0z = Rxm e+iκ0z, (2)

m = 1, . . . ,4, and

ET
xn =

2
√µnσ0√µnσ0 +

√µ0σn
e−iκnz = Txn e−iκ0z, (3)

n = 5, . . . ,8.

Equations 2 and 3 describe only the pure reflections
and transmissions that occur infinitely remote from both
faults on the horizontal boundaries, respectively between
medium 1 and medium 5, medium 2 and medium 6,
medium 3 and medium 7, and medium 4 and medium 8.
Employing Maxwell’s equation we can also describe in a
straightforward manner the correspondent y components
of the magnetic vector,

Hy1 = HP
y +HR

y1 +HS
y1, x > 0, y > 0, z < 0,

Hy2 = HP
y +HR

y2 +HS
y2, x > 0, y < 0, z < 0,

Hy3 = HP
y +HR

y3 +HS
y3, x < 0, y < 0, z < 0,

Hy4 = HP
y +HR

y4 +HS
y4, x < 0, y < 0, z < 0,

Hy5 = HT
y5 +HS

y5, x > 0, y > 0, z > 0,

Hy6 = HT
y6 +HS

y6, x > 0, y < 0, z > 0,
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Hy7 = HT
y7 +HS

y7, x < 0, y < 0, z > 0,

Hy8 = HT
y8 +HS

y8, x < 0, y > 0, z > 0, (4)

In equations 4, the y-oriented primary magnetic vector is
HP

y =
√

σ0
µ0ω e−i(κ0z+ π

4 ); the reflected y components of the

magnetic field are given by

HR
ym =−

√
σ0

µ0ω
(
√µ(m+4)σ0−√µ0σ(m+4))

(
√µ(m+4)σ0 +

√µ0σ(m+4))
e+i(κ0z− π

4 ), (5)

m = 1, . . . ,4, and the transmitted y components of the
magnetic field are given by

HT
yn =

√
σn

µnω
2
√µnσ0

(
√µnσ0 +

√µ0σn)
e−i(κnz+ π

4 ), (6)

n = 5, . . . ,8.

The solution of the three-dimensional wave equation also
yields the scattered components, identified in equations
1 and 4 with the superscript S. For the present three
dimensional model there are scattered components for the
x-oriented, the y-oriented and the z-oriented electric and
magnetic field vectors, even though only the x-oriented
electric field vector and the y-oriented magnetic field vector
have primary, reflected, and transmitted components.
Employing double unilateral Fourier cossine transforms we
may write them as follows:

ES
ηn(x,y,z,ω) =

4
π2

∫ ∞

0

∫ ∞

0

(
Aηn(α,β )cos(αx)cos(βy)e−un|z|

+Bηn(α,β )cos(αz)cos(βx)e−un|y|

+ Cηn(α,β )cos(αy)cos(β z)e−un|x|
)

dαdβ ,

HS
ηn(x,y,z,ω) =

4
π2

∫ ∞

0

∫ ∞

0

(
Dηn(α,β )cos(αx)cos(βy)e−un|z|

+Fηn(α,β )cos(αz)cos(βx)e−un|y|

+ Gηn(α,β )cos(αy)cos(β z)e−un|x|
)

dαdβ .

(7)

In equations 7: n = 1,2, . . . ,8; η = x,y,z; and un =√
α2 +β 2−κ2

n . Notice that κ1 = κ2 = κ3 = κ4 = κ0 and
κ2

m = −iµmσmω, ℜ(κm) > 0, ℑ(κm) < 0, for m = 5, . . . ,8. So,
the solution of the wave equations generates 144 unknown
kernel functions. The problem reduces to find their solution.

Analysis of the scattered components

To determine the functions A,B,C,D,F, and G, we must
apply the continuity of four tangential components of the
fields at each one of the twelve boundaries, which yields
only 48 equations. We may assume that the fundamental
uknowns are the x components of the electric and the
magnetic field and employ Maxwell’s equations to relate the
y and z components to the x components of the fields via
the following identities:

(
1− 1

κ2
n

∂ 2

∂x2

)
ES

yn =− 1
κ2

n

∂ 2ES
xn

∂x∂y
+

1
σn

∂HS
xn

∂ z
,

(
1− 1

κ2
n

∂ 2

∂x2

)
ES

zn =− 1
κ2

n

∂ 2ES
xn

∂x∂ z
− 1

σn

∂HS
xn

∂y
,

(
1− 1

κ2
n

∂ 2

∂x2

)
HS

yn =−σn

κ2
n

∂ES
xn

∂ z
− 1

κ2
n

∂ 2HS
xn

∂x∂y
,

(
1− 1

κ2
n

∂ 2

∂x2

)
HS

zn = +
σn

κ2
n

∂ES
xn

∂y
− 1

κ2
n

∂ 2HS
xn

∂x∂ z
. (8)

This reduces the number of necessary unknowns to 48,
but the derivatives will change some of the scattered
expressions to unilateral Fourier sine transforms for either
α or β or both of them. However, unilateral Fourier cossine
( F (α,β ) ) and sine ( F α (α,β ) ) transforms relate to each
other via single or double Hilbert transforms.

F α (α,β ) =− 1
π

∫ +∞

−∞

F (η ,β )
α−η

dη ,

F β (α,β ) =− 1
π

∫ +∞

−∞

F (α,ξ )
β −ξ

dξ ,

F αβ (α,β ) = +
1

π2

∫ +∞

−∞

∫ +∞

−∞

F (η ,ξ )
(α−η)(β −ξ )

dηdξ . (9)

Application of Maxwell’s equations and Hilbert transforms
will set, after application of the boundary conditions, a
system of 48 integral equations with 48 unknowns.

Identities for the scattered components

After applying equations 7 in equations 8 with the help of
equations 9 and considering the properties of the Fourier
transform we obtain the following twelve identities:
(

1+
α2

κ2
n

)
Ayn =− αβ

π2κ2
n

∫ +∞

−∞

∫ +∞

−∞

Axn(χ ,ξ )
(α−χ)(β −ξ )

dχdξ

−unsgn(z)
σn

Dxn,

(
1+

β 2

κ2
n

)
Byn = +

unsgn(y)β
πκ2

n

∫ +∞

−∞

Bxn(α,ξ )
β −ξ

dξ

+
α

πσn

∫ +∞

−∞

Fxn(χ,β )
α−χ

dχ ,

(
1− u2

n
κ2

n

)
Cyn = +

unsgn(x)α
πκ2

n

∫ +∞

−∞

Cxn(χ,β )
α−χ

dχ

+
β

πσn

∫ +∞

−∞

Gxn(α,ξ )
β −ξ

dξ ,

(
1+

α2

κ2
n

)
Azn = +

unsgn(z)α
πκ2

n

∫ +∞

−∞

Axn(χ,β )
α−χ

dχ

− β
πσn

∫ +∞

−∞

Dxn(α,ξ )
β −ξ

dξ ,

(
1+

β 2

κ2
n

)
Bzn =− αβ

π2κ2
n

∫ +∞

−∞

∫ +∞

−∞

Bxn(χ ,ξ )
(α−χ)(β −ξ )

dχdξ

+
unsgn(y)

σn
Fxn,

(
1− u2

n
κ2

n

)
Czn = +

unsgn(x)β
πκ2

n

∫ +∞

−∞

Cxn(α,ξ )
β −ξ

dξ

− α
πσn

∫ +∞

−∞

Gxn(χ,β )
α−χ

dχ ,

(
1+

α2

κ2
n

)
Dyn =− αβ

π2κ2
n

∫ +∞

−∞

∫ +∞

−∞

Dxn(χ ,ξ )
(α−χ)(β −ξ )

dχdξ

+
unsgn(z)σn

κ2
n

Axn,

(
1+

β 2

κ2
n

)
Fyn = +

unsgn(y)β
πκ2

n

∫ +∞

−∞

Fxn(α,ξ )
β −ξ

dξ
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−ασn

πκ2
n

∫ +∞

−∞

Bxn(χ,β )
α−χ

dχ,

(
1− u2

n
κ2

n

)
Gyn = +

unsgn(x)α
πκ2

n

∫ +∞

−∞

Gxn(χ ,β )
α−χ

dχ

− βσn

π2κ2
n

∫ +∞

−∞

Cxn(α,ξ )
β −ξ

dξ ,

(
1+

α2

κ2
n

)
Dzn = +

unsgn(z)α
πκ2

n

∫ +∞

−∞

Dxn(χ ,β )
α−χ

dχ

+
βσn

πκ2
n

∫ +∞

−∞

Axn(α,ξ )
β −ξ

dξ ,

(
1+

β 2

κ2
n

)
Fzn =− αβ

π2κ2
n

∫ +∞

−∞

∫ +∞

−∞

Fxn(χ ,ξ )
(α−χ)(β −ξ )

dχdξ

−unsgn(y)σn

κ2
n

Bxn,

(
1− u2

n
κ2

n

)
Gzn = +

unsgn(x)β
πκ2

n

∫ +∞

−∞

Gxn(α,ξ )
β −ξ

dξ

+
ασn

πκ2
n

∫ +∞

−∞

Cxn(χ ,β )
α−χ

dχ = 0. (10)

Equations 10 imply that, under the quasi-static assumption,
the horizontal component of the magnetic field may not be
constant at z = 0, because if the x and y components of the
D’s, F’s, and G’s terms are zero, then all the other scattered
terms vanish. This happens partially due to the fact that for
a 3D scattering we cannot assume any separation between
the TE and TM modes.

Boundary conditions

We shall now employ equations 1 and 7 to illustrate the
algebraic difficulties of the problem with the examples of
the continuity of: Ex, at y = 0, x < 0, and z < 0; and of Ey, at
x = 0, y < 0, and z < 0. Straightforward applications of the
boundary condition and of inverse Fourier transformation in
z for Ex yields that:

2π
∫ +∞

0

{
{Bx3(η ,β )−Bx4(η ,β )}cos(βx)dβ

+
{

Cx3(α,η)e−v3|x|−Cx4(α,η)e−v4|x|
}

dα
}

=

iπ2κ0

η2−κ2
0

(Rx4−Rx3)+
∫ +∞

0

∫ +∞

0

{
4u4

η2 +u2
4

Ax4(α,β )

− 4u3

η2 +u2
3

Ax3(α,β )

}
cos(αx)dα dβ , (11)

vn =
√

α2 +η2−κ2
n , n = 3,4. This equation contains the

known reflection terms and only the kernels assumed as
fundamental. This situation will also hold for the other 15
boundary conditions for Ex and Hx.

The same doesn’t occur with Ey, because the applications
of the boundary condition and of the inverse Fourier
transformation in z for it yields that:

2π
∫ +∞

0

{{
Cy2(α,η)−Cy3(α,η)

}
cos(αy)dα

+
{

By2(η ,β )e−t2|y|−By3(η ,β )e−t3|y|
}

dβ
}

=

+
∫ +∞

0

∫ +∞

0

{
4u3

η2 +u2
3

Ay3(α,β )

− 4u2

η2 +u2
2

Ay2(α,β )

}
cos(βy)dα dβ , (12)

tn =
√

η2 +β 2−κ2
n , n = 2,3. In this last equation, it is

necessary to employ the first three equations of equation
array 10, in order to substitute the kernels of the Ey
component by those of the Ex and Hx components. A
similar situation will hold for the other 31 equations of the y
and z components of the electromagnetic field.

Application of inverse x and y Fourier transformation,
respectively, in equations 11 and 12 will improve their
algebra. Even with this and similar improvements, the 48
boundary conditions will produce a cumbersome system of
integral equations, which will require special methods for
its solution.

Revisitation of the 2D problem

The solution prescribed by SF employs single unilateral
Fourier cossine transforms for both the x and z coordinates,
and every function representative of the electromagnetic
field components is valid only within one of the four quarter
spaces. As such, they are neither even ( fe) nor odd ( fo)
functions: they are causal ( fc) functions.

According to Papoulis (1962), fc(u) = 2 fe(u) = 2 fo(u), for
u > 0, and fc(u) = 0, for u < 0 in the one dimensional case.
It is straightforward to apply it to the two dimensional case.
Therefore, it is not correct to simply state that a reflected
field, expressed as E(r)(z) = Reiκz for z < 0, is neither even
nor odd, because for z > 0, E(r)(z) = 0. This is equivalent to
state that: E(r)(z) = E(r)

e (z)+E(r)
o (z), −∞ < z < +∞; E(r)

e (z) =
E(r)

o (z) = Reiκz/2, z < 0; and E(r)
e (z) = −E(r)

o (z) = Reiκz/2,
z > 0.

Obviously, the solution defined by Guimarães and Rijo
(2003) doesn’t represent a correction to the SF solution,
because it complies to the Born’s approximation and differs
from the solution of Weaver (1963) because it interchanges
the roles of the x and the z coordinates and employs two
scattering terms instead of only one.

The question of convergence of the series is far more
difficult. We will make a heuristic approach to analyse it.
Equations 51 and 52 of SF define, for the quasi-static case,
that: f (0)

0,1 (β ) = g(0)
0,1(β ) = g(0)

0,2(β ) = 0 and

f (0)
1 (β ) =

2iA(u1−u2)
πu2

1u2
. (13)

Consequently, it results from equations 29-32 of SF that:

g(1)
0,i (β ) =

2A
(√

β 2−
√

u2
i +κ2

j

)

π(u0 +ui)
√

β 2
√

u2
i +κ2

j

(14)

and f (2n−1)
0,1 (β ) = f (2n−1)

1 (β ) = g(2n)
0,i (β ) = 0, n ≥ 1. In

equations 13 and 14, A = ωµ0H, ui =
√

β 2−κ2
i , i = 1,2,

j = 2,1, j 6= i. We also may verify at once that f (0)
1 (β ) and

g(1)
0,i (β ) assume the following asymptotic expressions:

f (0)
1 (β >> |κ j|) =

2A
π

(κ2
2 −κ2

1 )
2β 4 , (15)
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g(1)
0,i (β >> |κ j|) =

2A
π

κ2
j

4β 4 . (16)

The asymptotic value of f (0)
1 is twice that of g(1)

(0,i) because
of the occurrence of the addition term (u0 + ui) in the
denominator of equation 14. Though explicit for large
values of β , this two fold ratio applies for any value
of the integration variable. Addition terms of the type
(ui + u j) are present in equations 29-32 of SF, in such a
way that every function of a consecutive larger order will
incorporate another one of those terms. Therefore, we
have that: (i) O( f (2n)

1 ) = β−4, n ≥ 0; (ii) O(g(2n+1)
0,i ) = β−4,

n≥ 0; (iii) O(g(2n−1)
0,i ) = 2O( f (2n)

1 ), n≥ 1; and (iv) O( f (2n)
1 ) =

2O(g(2n+1)
0,i ), n ≥ 1. As a result, the order of each series is

a geometrical progresson of ratio 1/4 and

lim
N→∞

N

∑
n=0

O
(

f (2n)
1

)
=

4
3

f (0)
1 , (17)

lim
N→∞

N

∑
n=0

O
(

g(2n+1)
0,i

)
=

4
3

g(1)
0,i . (18)

These results don’t prove the convergence of the series for
every value of the integration variable, but they show that
the terms of each series decrease in magnitude as their
order increases. So, if the series are not convergent, they
are asymptotics. Under the asymptotic condition, we must
determine the maximum order of the series beyond which
it may no longer represent the function under investigation.
Also, we may express R0,i and Ti in the following forms:

R0,i e+iκ0z =
∫ ∞

0
g(0)

0,i (α)cos(αx)e+u0z, (19)

Ti e−iκiz =
∫ ∞

0
g(0)

i (α)cos(αx)e−uiz, (20)

which results that g(0)
0,i (β ) = R0,iδ (β ) and g(0)

i (β ) = Tiδ (β ).
This means that the zeroth-order g’s terms of the scattered
functions may substitute the reflection and the transmission
terms of the laterally homogeneous case, and imposes
each iteration to consist of a g(2n−1) term followed by an
f (2n) term, n ≥ 1. Doing otherwise, the result will either
oscillate or show a discontinuity of the electric field at the
boundary.

One should be cautious with results from numerical
integration. This is specially true in the present case
because we deal with repeated improper integrals of
complex functions and the kernels are analytic functions
with poles and branch points. To obtain f (m)

1 it is necessary
to perform m recurrent integrations and each integration
should avoid or circumvent the singularities. We can
achieve this, not always easily, for analytical integration
by modifying the countour of integration on the complex
plane. Not for recurrent numerical integrations. They will
accumulate errors due to approximation and interpolation,
specially near singularities of the integrands.

Concluding remarks

The Neumann’s series solution of SF is consistent with
the physics of the problem and represents, at least, an
approximate asymptotic solution for the 2D EM scattering

problem of the vertical fault. The question as to whether
the series is convergent or not represents an interesting
problem that remains unanswered.

The extension of the SF procedure to the 3D case consists
of a formidable problem, which will require the application
of sophisticated matrix theory to approach its complete
solution. Nevertheless, the present partial development
enhances the kind of pitfalls that may be present in forward
3D EM scattering models. As such, it should be an alert to
those dealing with this type of problem.

The partial development also suggests how to improve the
2D SF solution and, hopefully, clarify its variance with Rijo’s
results employing finite element. According to Papoulis
(1962) we must employ only unilateral Fourier cossine
transforms instead of sine transforms to express causal
functions at the boundaries. So, if we apply this principle
to both terms of the scattered Hx and Hz components of
the SF solution and use Hilbert’s transform, we obtain the
following correction for equations 13 and 14:

f (0)
1 (β ) =

iA
π u1 u2

{
2(u1−u2)

u1
+

√
β 2(κ1u1−κ2u2)
κ1κ2(u1 +u2)

}
, (21)

g(1)
0,i (β ) =

A
π(u0 +u1)





2
(√

β 2−
√

u2
i +κ2

j

)

√
β 2

√
u2

i +κ2
j

+
iui

(
κi

√
β 2−κ j

√
u2

i +κ2
j

)

κ1κ2

√
u2

i +κ2
j

(√
β 2 +

√
u2

i +κ2
j

)


 , (22)

and all the other terms of the series will change accordingly.
With this improvement, the SF solution may continue
to calibrate or serve to compare solutions from other
techniques.
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