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Abstract

This paper presents an alternative method to evaluate
numerically the Fourier-Bessel integrals occurring
in many electromagnetic field models used in the
interpretation of geophysical data. In particular
the interest is in the sea-bed-logging layered earth
problem with a horizontal electric dipole (HED) in
an anisotropic media when the lateral coordinate
ρ is large (on the order of 10 km) resulting in
highly oscillatory integrals that are difficult to evaluate
numerically. The method replaces the real axis
integration with a mathematically equivalent complex
contour integration that converges exponentially
when the product of the integration variable λ and
the horizontal coordinate ρ is large. Example
computations are made for the three components of
the electric field for a standard form of the one-
dimensional HED layered earth model. Analytic and
numerical forms are compared for the primary fields
and show good agreement.

Introduction

Computation of the electromagnetic fields of layered one
dimensional models for dipole and loop sources involve
numerical integration of Fourier-Bessel transforms with
Bessel functions of order 0 and 1. For moderate distances
scaled in skin depths, the integrands are usually smooth
and do not have many oscillations before convergence is
reached. In such cases simple real axis integration using
for example Gauss-Legendre quadrature is adequate.
However there are important cases for interpretation of
measured geophysical data with distances of several skin
depths, where the integrands can be highly oscillatory. In
particular, in the case of sea bed logging, the horizontal
coordinate separation ρ between transmitter and receiver
locations can be over 10 km requiring source frequencies
on the order of 1 Hz. The Fourier Bessel integrands have
exponential convergence in the vertical coordinate z, but
to have maximum range, the vertical separation between
the transmitter and receivers on the sea-bed floor are kept
small, on the order of 20 m.

In this situation the integrands are highly oscillatory with
a slowly decreasing envelope. The real axis integration

is equivalent to summing numerically a slowly convergent
alternating series. Since each succeeding term of
alternating sign is only slightly smaller than the preceding
term, the round off error can be significant when thousands
of terms are summed in order to achieve sufficient
convergence. One method to approach this type of
problem is to apply special oscillating quadrature formulas.
An early classic example of this type of quadrature is known
as Filon’s method (Abramowitz and Stegun, 1964). Filon
used quadratic interpolation, Simpson’s rule, to interpolate
the kernel function h(x) between sample points to increase
the accuracy of the integration of Fourier transform factor
oscillatory factor eikx. A cubic interpolation oscillatory
quadrature algorithm is also available (Press et. al. 1986).
A more sophisticated oscillating quadrature method has
been developed (Ting and Luke, 1981).

A popular and efficient method for numerical evaluation
of Fourier-Bessel transforms uses fast Hankel transforms
(Anderson, 1982). The resulting filters contain the Bessel
function evaluations and are manipulated by exponential
transform into a convolutional form. These techniques
are efficient and with care can be used with oscillating
integrands.

The approach here is to reduce the significant length real
axis interval necessary to achieve numerical convergence
by moving the numerical integration into the complex plane.

Fourier-Bessel Transform Numerical Integration

In cases where the receiver antennas have relatively large
separation horizontally from the transmitter, the Fourier-
Bessel integrands of the scattered potentials are highly
oscillatory making them difficult to evaluate by conventional
quadrature formulas. In such cases, it is advantageous to
deform the real axis integration into the complex λ plane.
The transform integrals have the form

In(z,ρ) =
∫

∞

0
Fn(λ ,z)Jn(λρ)λ dλ ,n = 1,2 (1)

where the kernel function has the symmetry Fn(−λ ,z) =
−(−1)n Fn(λ ,z). Then it is possible to represent the
transform integral in the form

In(z,ρ) = 1/2
∫

∞

−∞

Fn(λ ,z)H(1)
n (λρ)λ dλ , (2)

where the Hankel function of the first kind and order n
has the asymptotic behavior (when |λρ| >> 1 and −π <
arg(λρ) < 2π)

H(1)
n (λρ)≈

√
2/(πλρ)ei(λρ−nπ/2−π/4) . (3)

Twelfth International Congress of The Brazilian Geophysical Society



TITLE RUNNING HEADER 2

λλλλ0−−−−λλλλ0 Re(λλλλ))))

Im(λλλλ)

I
1

I
2

I
3

ψ0ψ0

Figure 1: Three segment complex contour integration Γ =
I1 + I2 + I3 with ray elevation angle ψ0 in the λ plane.

The idea is not new, for example a similar method has been
used before (Anderson et. al. 1986) and others. This
method differs in that the ray elevation angle ψ0 depends
on the values of the coordinates ρ and z. To determine
ψ0, note that the exponential behavior of the Fourier-Bessel
integrals for the up-going factor eiunz, when the magnitude
of the integration variable λ is large with respect to the
magnitude of the intrinsic wavenumbers is

I(λ ) = eiλρ−λ z (4)

Let z = Rsinθ , ρ = Rcosθ , where R = (ρ2 + z2)1/2. On
contour segment I3 let the integration variable λ be given
by

λ = λ0 + eiψ0 s , (5)

where s is real and positive. Then it follows that for the
choice

ψ0 = π/2−θ , (6)

the exponential factor in equation (5) has maximum
convergence, i.e.

I(λ ) = I(λ0)e−Rs . (7)

This choice of angle ψ0 is the asymptotic limit of the
steepest descent path and in this sense is optimal.
Similar results follow for the three other exponential factors
e−iunz,eivnz and e−ivnz. Thus one replaces the real axis
integration by deformation into the upper-half λ plane. If
this entails crossing branch cuts or poles of the integrand,
they must be included. Fig. 1 shows the complex contour
integration path Γ = I1 + I2 + I3. By choosing real segment
I2 end points ±λ0 to the right and left respectively of
integrand singularities and branch cuts, the ray paths I1 and
I2 are equivalent, by Cauchy’s integral theorem, to their real
axis counterpoints.

On the ray segments I1 and I3 the integrand decays
exponentially and end points are chosen such that the
integrand is less than a set tolerance. The upper limit
on rays is chosen such that the value of the exponential
part of the integrands are equal to 1.0×10−7. As practical
examples, consider the three electric field components of a
HED in an N layer anisotropic media. From results similar
to Xiong (Xiong, 1989), the Fourier-Bessel representation
of these are given by

E(s)
nx (x) = ω µ0 I0d`

4πk2
hn

[
−cos2φ

ρ

∫
∞

0

[
k2

hn(a
(+)
n eiunz +a(−)

n e−iunz)

+ivn λ 2(b(+)
n eivnz−b(−)

n e−ivnz)
]

J1(λρ)dλ+
−sin2

φ k2
hn

∫
∞

0 (a(+)
n eiunz +a(−)

n e−iunz)
J0(λρ)λ dλ + cos2 φ

∫
∞

0 ivn λ 2 (b(+)
n eivnz−

b(−)
n e−ivnz)J0(λρ)λ dλ

]
,

E(s)
ny (x) = ω µ0 I0d`

4πk2
hn

sin2φ

∫
∞

0

[
k2

hn (a(+)
n eiunz +a(−)

n e−iunz)+

ivn λ 2(b(+)
n eivnz−b(−)

n e−ivnz)(J0(λρ)/2
− J1(λρ)

λρ
)
]
λ dλ ,

E(s)
nz (x) = ω µ0 I0d`

4πk2
hn

cosφ κ2
n

∫
∞

0
λ 4 (b(+)

n eivnz +b(−)
n e−ivnz)

J1(λρ)dλ .
(8)

These representations are a consequence of the two
component magnetic vector representations

Ax(x) = iµ0I0 d`
4π

∫
∞

0

[
a(+)

n (λ )eiunz +a(−)
n (λ )e−iunz]

J0(λρ)λdλ ,

Az(x) = iµ0I0 d`
4π

∂

∂x

∫
∞

0

[
b(+)

n (λ )eivnz +b(−)
n (λ )e−ivnz

− iun
λ 2 a(+)

n (λ )eiunz + iun
λ 2 a(−)

n (λ )e−iunz]J0(λρ)λdλ ,

(9)

where

un =
√

k2
hn−λ 2, Im(un)≥ 0 ,

vn =
√

k2
hn−κ2

n λ 2, Im(vn)≥ 0 ,
(10)

and the horizontal and vertical intrinsic layer wavenumbers
are

khn = (iµ0ωσhn)1/2, Im(kn)≥ 0 .
kvn = khn/κn .

(11)

where µ0 is the magnetic permeability of free space, ω =
2π f is the circular frequency in rad/s, σhn is the nth layer
horizontal conductivity in S/m, and the nth layer anisotropic
index is

κn = (σhn/σvn)1/2 (12)

The Fourier-Bessel amplitudes (a(±)
n (λ ),b(±)

n (λ )) are
determined by matching tangential field components at the
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Figure 2: Comparison of Analytic and Numerical forms of
E(p)

x (ρ,z) for parameters given by equation (15).

boundaries. For purposes here it is sufficient to note that
the primary field coefficients for a HED antenna are known
to be

a(0+)(λ ) = e−iuns zT /uns ,

a(0−)(λ ) = 0 ,

b(0+)(λ ) = ie−ivns zT /λ 2 ,

b(0−)(λ ) = 0.

(13)

This choice of coefficients when substituted in equation (8)
is the Fourier-Bessel representation of the primary electric
field. The primary electric field has the explicit analytic form

E(p)
x (x) = iωµ0 I0d`

4πk2
h

[
eikhR

R (k2
h sin2

φ − ikhRcos2φ/ρ2)+

κ cos2φ
eikvRa

R3
a

(1+ ikvRaκ2(z− zT )2/ρ2)−
κ cos2 φ

eikvRa

R5
a

(
ikvR3

a

−R2
a−κ2(z− zT )2(k2

v R2
a +3ikvRa−3)

)]
,

E(p)
y (x) = −iωµ0 I0d`

4πk2
h

sin2φ

[
ikh

eikhR

R (1/ρ2− ikh/(2R))

−κ
eikvRa

2R3
a

(
3− ikvRaκ2 (z−ZT )2

R2
a

−(3−3ikvRa− k2
v R2

a−2ikvR3
a/ρ2)

)]
,

E(p)
z (x) = −iωµ0 I0d`

4πk2
h

κ(z− zT )ρ cosφ
eikvRa

R5
a

[3iκ2kvRa−
3κ2 + k2

hR2
a] .

(14)

Computation and comparison of representations (8) and
(14) for typical sea-bed-logging geometries (Eidesmo,
2002) provides a good test of accuracy of the numerical
integration as well as the consistency of the Fourier-Bessel
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Figure 3: Comparison of Analytic and Numerical forms of
E(p)

y (ρ,z) for parameters given by equation (15).

transform and analytic forms of the field representations.
The following comparisons use parameters

f = 0.25 [Hz]
I0 d` = 1 [Amp−m]
zT = 0 [m]
σh = 4 [S/m]
κ = 2 [unitless] .

(15)

The angle with respect to the real(λ ) axis of contour
segments I1 and I3 is chosen to be the non-optimal but
constant value π/3. The optimum values depend on both
ρ and z. The examples here use 256 Gauss-Legendre
quadrature points on the real axis segment and 512 points
on the complex ray segments.

Summary and Conclusions

This paper presents a simple alternative method to
efficiently evaluate Fourier-Bessel transforms numerically
with possible highly oscillatory integrands. The numerical
integration uses a simple contour consisting of three
straight line segments in the complex λ plane. The
elevation angle ψ0 of the first and last segments can be
chosen asymptotic to the steepest descent path and in
this sense the contour is asympotically optimal. Example
computations of HED electric field components for a
layered anisotropic model show at least 6 significant figures
of accuracy for radial offsets of up to 14 km.
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