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Abstract 

In recent years, 3D volumetric attributes have gained 
wide acceptance by seismic interpreters. The early 
introduction of single-trace complex trace attributes was 
quickly followed by seismic sequence attribute mapping 
workflows. 3D geometric attributes such as coherence 
and curvature are also widely used. Most of these 
attributes correspond to very simple, easy-to-understand 
measures of a waveform or surface morphology. 
However, not all geologic features can be so easily 
quantified. For this reason, simple statistical measures of 
the seismic waveform such as RMS amplitude and 
texture analysis techniques prove to be quite valuable in 
delineating more chaotic stratigraphy. In this paper, we 
coupled structure-oriented texture analysis based on the 
gray-level co-occurrence matrix with self-organizing maps 
clustering technology and applied it to classify seismic 
textures. By this way, we expect our workflow should be 
more sensitive to lateral changes rather than vertical 
changes in reflectivity. We applied the methodology to a 
3D seismic survey acquired over OsageCo., OK, USA. 
and our results indicate that our method can be used to 
delineate the meandering channels as well as to 
characterize chert reservoirs. 

 

Introduction 

One of the main goals of reflection seismology is to 
analyze the seismic waveform and amplitude to predict 
lithologic facies, reservoir compartmentalization and rock 
properties such as porosity and thickness by analyzing 
the seismic waveform and amplitude.  Seismic attribute 
analysis is a technique that is commonly used by the oil 
industry to delineate stratigraphic and structural features 
of interest. Seismic attributes are particularly important in 
allowing the interpreter to enhance and visualize subtle 
features. For example, coherence can generate easy-to-
understand images of polygonally-faulted dewatered 
shales that may be difficult to see on seismic amplitude 
time slices. Curvature can enhance long wavelength 
flexures and folds in and out of the plane of visualization. 
Spectral components may highlight subtle thin bed tuning 
effects. Many commercial seismic interpretation packages 
contain schemes to calculate attributes such as RMS 

amplitude and relative impedance, both of which are 
sensitive to changes in acoustic impedance. Each of 
these attributes is based on a very simple geometric or 
physical model that can be related to structure, 
stratigraphy, diagenesis, or data quality.  

Not all geologic features follow such a simple model. 
Experienced interpreters can easily recognize the seismic 
response of a crystalline basement, mass transport 
complexes, and carbonate reef buildups. However, when 
put to the task they find it difficult to quantitatively define 
how they do their interpretation. Such interpreters (and 
human beings in general) are experts at texture analysis. 
Our study focuses upon seismic texture analysis, 
borrowing techniques commonly used in remote sensing 
to map terrain, vegetation, and land-use information.  
Textures are frequently characterized as different patterns 
in the underlying data.  Seismic texture analysis was first 
introduced by Love and Simaan (1984) to extract patterns 
of common seismic signal character. More recently, West 
et al. (2002), Gao, (2003, 2004, 2007, 2009), and Chopra 
and Alexeev (2006) have extended texture analysis to 
seismic amplitude data through the use of the gray-level 
co-occurrence matrix (GLCM). First introduced by 
Haralick et al. (1973), Reed and Hussong (1989) and Gao 
(2003) applied gray level co-occurrence matrix to seismic 
data in order to quantify seismic stratigraphic textures. 
Such texture attributes hold significant promise in 
quantifying geological features such as mass transport 
complexes, amalgamated channels, and dewatering 
features that exhibit a distinct lateral pattern beyond 
simple edges. Like seismic waveform classification 
(Coléou et al., 2003), and spectral components, GLCM 
attributes are amenable to subsequent clustering analysis 
using self-organizing and generative-topographic maps 
(Angelo et al., 2009; West et al., 20032; Gao, 2007; 
Wallet et al., 2009).  

We begin by defining texture in terms of tactile sensation 
and amplitude variability using the GLCM. We then show 
how we generalize GLCM attributes typically applied to a 
photographic image or a seismic horizon slice to a 3D 
seismic volume and show how our GLCM attributes can 
be used to analyze the results using an SOM algorithm by 
projecting SOM prototype vectors onto a 2D color bar 
(Matos et al., 2009). Next, we apply our workflow on data 
over Oswego Formation containing thin channels and a 
chert reservoir for a 3D survey acquired over Osage Co., 
OK, USA. Finally, we conclude with a summary of 
advantages and limitations of this method. 

Texture 

Hall-Beyer (2007) defines texture as ―an everyday term 
relating to touch that includes such concepts as rough, 
silky, and bumpy. When a texture is rough to the touch, 
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the surface exhibits sharp differences in elevation within 
the space of your fingertip.  In contrast, silky textures 
exhibit very small differences in elevation‖. Seismic 
textures work in an analogous manner with elevation 
replaced by amplitude, and the probing a finger by a 
rectangular or elliptical analysis window oriented along 
the local dip and azimuth of the structure. 

 

The Gray Level Co-occurrence Matrix  

The GLCM is a tabulation of how often different 
combinations of voxel amplitude/brightness values (gray 
levels) occur in an analysis window.  Intuitively, we 
mentally apply texture analysis any time we view a 
shaded-relief time-structure map. We recognize 
piecewise smooth surfaces separated by discrete faults, 
tightly folded areas, and chaotic zones.  Our method 
differs from others (West et al.,2002 and Gao, 2003, 
2004, 2007, 2009), in two ways. First, our method is 
structure-oriented and can therefore be applied to 
unflattened 3D seismic volumes. Second, our goal is to 
compute textures sensitive to lateral changes rather than 
vertical changes in reflectivity. Given that the seismic 
wavelet modulates the reflection coefficients and hence 
the subsurface lithology, we think that measures such as 
spectral decomposition and dip convergence do an 
excellent job of measuring amplitude variability normal to 
a locally dipping plane. Instead, we use the vertical 
window to ‗stack‘ these texture measures. Parallel to the 
local dip, we define a local analysis window.  We also 
reformat the data from 32-bit data to 2NL+1 levels, with 
values from 1 to NL  correlating to troughs, NL+1 to a 
zero-crossing, and from NL+2 to 2NL+1to peaks. Figure 1 
shows a quantization example when levels vary between 
1 and 9, where values of 1-4 correspond to troughs, 5 to 
zero crossings, and 6-9 to peaks. 

 

Fig. 1 - Quantization of a seismic trace using nine gray levels. 
Levels 1-4 represent troughs, 5 zero crossing, and 6-9 peaks. 
We find that quantization into 65 or 127 levels is sufficient for 
most seismic amplitude and attribute volumes. Coarser 
quantization with few levels results in clipped volumes that result 
in artificial homogeneous patches of data. 

Next, we compute the GLCM, (2NL+1) by (2NL+1) matrix, 
within a (2mx+1) by (2my+1) window along the k

th
 horizon 

slice: 

𝑃𝑖𝑗 =   𝛿 𝑑𝑝 ,𝑞 ,𝑘 − 𝑖 𝛿 𝑑𝑝+∆𝑝 ,𝑞+∆𝑞 ,𝑘 − 𝑗 

+𝑚𝑦

𝑞=−𝑚𝑦

+𝑚𝑥

𝑝=−𝑚𝑥

 

 

(1) 

where i and j vary from 1 to 2NL+1, dp,q,k and dp+∆p,q+∆q,k 
are the integer-valued scaled seismic data at the (p,q) 
and (p+Δp,q+Δq) CDP locations and the delta function, 
δ(ξ)=1 if ξ=0 and 0 otherwise. We choose a suite of 
offsets Δp and Δq to represent repetitive patterns at 

angles of 0
o
, 45

o
, 90

o
 and135

o 
to the inline axis. We have 

found that scaling and quantizing our seismic amplitude, 
or any other desired attribute volume to integer values 
ranging between -32 and +32 (or 2NL+1=65) provides 

sufficient dynamic range yet manageable-sized matrices, 
P.  

In summary, we need to define four parameters in 
constructing the GLCM: 

 the quantization level of the image,  

 the size of the moving window,  

 the direction and distance of voxel pairs, and  

 the statistics used as a texture attribute. 

 

GLCM texture analysis workflow 

Our 3D workflow is described by the flow chart shown in 
Figure 2. First, we precompute dip and azimuth at every 
seismic sample using one of the alternative 3D volumetric 
dip calculation algorithms (Randen et al. 2000; Barnes, 
2000; Chopra and Marfurt, 2007; Fomel, 2008). Next, we 
extract data windows that are (2mx+1) by (2my+1) traces 
wide by (2K+1) time or depth samples thick along dip and 
azimuth for each and every output location.  For each 
temporal slice k we compute the maximum of the 
absolute value 

   
   
𝑖 𝑗

             −𝑚  𝑖   𝑚   −𝑚  𝑗

  𝑚  
(2) 

and then scale and quantize the data according to  

𝑑         
    

  
         (3) 

where the function NINT returns the nearest integer to its 
floating point argument, such that the resulting integer 
valued data fall within the range -NL≤dpqk≤ NL. 

For each time or depth level k, we compute the (2NL+1) 
by(2NL+1) GLCM, P, using equation 1 followed by one or 
more attributes, gk, using equations A-1 through A-8. A 
more robust GLCM attribute, G, is then computed from 
each level by 

       

  

    

   (4) 

where 

   
  

   
  
    

   (5) 
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To reduce low signal-to-noise problems, we use the real 
as well as imaginary components of the analytic trace to 
build the matrices P used to compute the attribute gk in 
equation 4. Finally we cluster these attributes using self-
organizing maps for further interpretational analysis. 

 

Figure 2. 3D GLCM computation workflow. 

 

Self-organizing map (SOM) 

Self-organizing maps, SOM, (Kohonen, 2001) and K-
means clustering are the two most commonly used tools 
for non-supervised seismic facies analysis with SOM 
providing ordered clusters and are typically mapped 
against a 1D gradational color bar (Coléou et al., 2003). 
SOM is a special vector quantization method that 
represents multi-dimensional data by using a relatively 
low-dimension (1, 2, or 3) latent-space grid. Although the 
SOM has the same relatively high dimension of the input 
data, by construction SOM preserves the adjacent 
relationship among each SOM quantized vector (Matos et 
al., 2007). In this manner, SOM can be interpreted as a 
mapping of seismic attributes residing in r-dimension 

space onto a 1D, 2D, or 3D latent space that preserves 
the original topological structure of the seismic amplitude 
data (Wallet et al., 2009). In this paper we assume that 
the input variables to the SOM are the GLCM attributes 
while the resulting 2D SOM is mapped against a 2D color 
bar. The 2D color bar is created by applying the HSV 
color model to the projections of the SOM by using 
Principal Component Analysis or Sammon mapping onto 
a two dimensional plane (Matos et al., 2010).  

 

Applications to 3D seismic data 

 The present study area is from Osage County, north-east 
Oklahoma, USA (Figure 3). It is bounded by the Ozark 
uplift to the east, the Nemaha uplift to the west, the 
Kansas state boundary to the north, and the Arkansas 
river to the southwest. Red Fork sandstone and 
Mississippian Limestone reservoirs from this area have 
been characterized by using GLCM attributes (Yenugu et 
al., 2010). In this paper, we applied SOM clustering 
technology associated with GLCM attributes to identify 
the Pennsylvanian channels and to characterize the 
Mississippian chert reservoir from the same area. 

 

Fig. 3 - Map showing the geological provinces of Oklahoma. The 
study area is in Osage County, the Cherokee platform, northeast 
Oklahoma (Modified after Northcutt and Campbell, 1995). 

First, we generated seven GLCM attributes from the 3D 
seismic data: contrast, energy, entropy, dissimilarity, 
homogeneity, mean, and variance. Then, we flattened 
each GLCM attribute volume around Oswego horizon and 
cropped them 10 samples above and 59 samples below 
Oswego, to make every trace with 70 samples (138 ms 
time interval). Figure 4 shows vertical slices along line AA‘ 
through GLCM flattened attributes. These seven GLCM 
cropped volumes were combined such that each voxel 
represents seven GLCM attributes. We, then, apply SOM 
and map the prototype vectors against a 2D color bar as 
shown in Figure 5b and described by Matos et al. (2009). 
The SOM classification results in a 3D volume with the 
same dimensions as a single GLCM attribute volume. 
Figure 5a shows the SOM vertical section along the inline 
AA‘ and Figure 5c shows the seismic amplitude section 
for the same inline. Both sections are flattened as the 
Oswego horizon. 

 

Identification of Pennsylvanian channels 

Stratigraphically, the top of the Pennsylvanian age is the 
Oswego limestone and the base is the Red Fork 
sandstone. The Verdigris sandstone, the Skinner 
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sandstone and the Pink sandstones fall in between the 
Oswego and the Red Fork. The independent oil and gas 
operators do not show interest in targeting these channels 
since they cannot be identified through seismic. We used 
our SOM technique on GLCM attributes and scanned the 
slices from Oswego horizon. We observed two different 
meandering channels on the slice of sample no. 26, 30 
ms below Oswego, (Figure 6b) and named them channel-
A (white arrow) and channel-B (red arrow). The 
corresponding seismic phantom horizon is shown on 
Figure 6a. Scanning further into the Pennsylvanian 
formation, the channel-B disappeared, whereas channel-
A appeared very clear meandering on the slice of sample 
no. 30, 38 ms below Oswego (Figure 6d). The 
corresponding seismic phantom horizon is shown on 
Figure 6c. Hence the SOM clustering technology applied 
on GLCM attributes brought out two distinctive 
Pennsylvanian meandering channels, which were not 
mapped before using 3D seismic data. Though Well-1 
(Figure 7) was drilled through channel-A, no well log 
information was available to characterize this channel and 
verify the classification result. 

 

Fig. 4 - Vertical slices along line AA’ through GLCM attributes: a) 
contrast; b) dissimilarity; c) energy; d) entropy; e) homogeneity; f) 
mean; and g) variance.. Location of line is shown Figures 12 and 
13. 

 

Characterization of the Mississippian chert reservoir 

Chert is siliceous and composed of Silicon Dioxide (SiO2). 
It represents an unconventional reservoir rock and is 
productive in West Texas, northern Oklahoma, south-
central Kansas, California and Canada (Rogers and 

Longman, 2001). The Mississippian chert is a complex 
reservoir and is a significant oil and gas producer in the 
Mid-Continent. Chert is a non uniformly deposited rock 
with thickness, porosity, permeabilityand fluid saturation 
varying from well to well within the same field. Mapping 
these unconventional rocks on seismic is a big challenge 
for the interpreters. Seismic attributes like RMS amplitude 
and dominant frequency do not yield fruitful results for 
chert reservoir characterization. We applied ourSOM 
clustering technology of the GLCM attributes to 
characterize the unconventional cherty reservoir. 

 

 

Fig. 5 - Vertical slices along line AA’ through (a) SOM clusters 
computed from volumetric GLCM attributes, its (b) SOM 2d 
colorbar, and (c) seismic amplitude. Location of line is shown 
Figures 6 and 7. 

A horizon slice (Figure 7) is extracted within Mississippian 
chert reservoir zone. We identified three different facies 
based on the SOM map. Facies-I correspond to deep 
blue to blue green color, Facies-II correspond to light to 
deep red color and Facies-III correspond to light to 
medium green color on the map. These facies indicate 
the distinctive nature of deposition of chert rocks. We tried 
to calibrate the facies maps with the available log and 
production data from the wells and observed that the 
Facies-I in Wells 1 and 2 are good producers of oil and 
gas with high porosities and permeability. The Well-3 
which is drilled through Facies-II is a tight reservoir with 
less hydrocarbon saturation. No well was drilled through 
Facies-III to characterize them based on this map. The 
facies map generated on GLCM attributes using SOM 
clustering technology has been used to understand the 
heterogeneity in terms of reservoir facies, porosities and 
saturation within the same chert reservoir formation. Thus 
the SOM clustering technology has been used to 
understand the distinctive reservoir properties of chert 
reservoir. 
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Fig. 6 - (a) Seismic amplitude phantom horizon 30ms below 
Oswego horizon within Pennsylvanian; (b) SOM horizon slice 
30ms below Oswego horizon. SOM 2D Color bar is shown on the 
right; (c) Seismic amplitude phantom horizon 38ms below 
Oswego horizon (d) SOM horizon slice 38ms below Oswego 
horizon. SOM 2D Color bar is shown on the right. 

 

Fig. 7 - Horizon slice within chert reservoir through the SOM 
clusters computed from GLCM attributes. SOM 2D Color bar is 
shown on the top right. Roman numerals I, II, III correlate to good 
porous, tight and unknown facies respectively. 

 

Conclusions 

Traditional 2D seismic stratigraphy is based on a human 
interpreter identifying of subtle textures, such as onlap, 
offlap, unconformities, hummocky clinoforms, and 
parallelism. With the aid of volumetric attributes, 3D 
seismic geomorphology extends these concepts to 
volumetric data. While GLCM technology is commonly 
applied in remote sensing applications, it has not yet been 
widely accepted by the seismic interpreters community. 
We believe we have addressed several of the drawbacks 
that have caused difficulties in the past. First, we compute 
all our GLCMs along structural dip, thereby minimizing 
computational artifacts. Second, we perform our analysis 
on a 16-node processor, thereby reducing the relatively 
slow run times. Third, we avoid low-signal-to-noise issues 
by computing GLCM attributes from the analytic trace 
(separately  using both real and imaginary parts) and 
stacking the results using a ±10 ms (11 slices) vertical 
analysis window using weights proportional to the 
maximum absolute amplitude of each slice.  The GLCM 
attributes are less physical and therefore less-easily 
interpretable than more popular attributes like RMS 
amplitude, coherence, and curvature. For this reason, we 
combine our GLCM attributes using an efficient SOM 
clustering algorithm and plot the results against a 2D 
color bar, thereby minimizing the number of attribute 
volumes that need to be visualized and interpreted in a 
workstation. 

The strength of our algorithm is also its limitation. By 
construction, we have avoided the important onlap, offlap, 
concordance, and hummocky clinoform patterns analyzed 
by workers using 2D vertical slices such as Ruffo et al. 
(2007). For this reason, a more robust interpretation 
workflow should include attribute sensitive to both lateral 
texture patterns (such as described in this paper) and 
vertical texture patterns (such as measured by spectral 
components). In summary, we believe that texture 
attributes hold significant promise in quantifying 
geological features such as mass transport complexes, 



GLCM AND SOM APPLIED TO RESERVOIR CHARACTERIZATION 
 ________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________  

Twelfth International Congress of the Brazilian Geophysical Society 

6 

amalgamated channels, and dewatering features that 
exhibit a distinct lateral pattern beyond simple edges. We 
also believe that our technique will be useful not only for 
delineation of reservoirs (Pennsylvanian channels), but 
also  for more quantification of reservoir parameters 
(Mississippian chert) such as porosity, fluid saturation and 
pressure differences as used previously by Yenugu et al 
(2010) and Chopra and Alexeev (2006). 
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