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Abstract. This paper presents an algorithm for computing 

the best  factors for the absorbing boundary methods 
applied for numerical simulations of acoustic waves via 
10-4 10th order in space and 4nd order in time staggered-
grid finite difference scheme. First, the absorbing 
boundary methods – Damping Zone (DZ) and Perfect 
Matched Layer (PML) – are showed and optimized in 
order to minimize the spurious reflections associated with, 
improving the quality of the numerical results and 
reducing its computational effort. Then, an algorithm 
based on Golden Section Search Scheme is implemented 
and tested for both PML and DZ optimized in order to 
computes the best coefficient absorbing factors in 2D 
problems. With a few iterations the algorithm computes 
those coefficients reducing energy reflection. Finally, 
trough examples, the algorithm applicability is shown and 
the results of each absorbing technique are compared. 
The results also show that this algorithm can reduces 
considerably the analysis of 3D problems. 

 
1. INTRODUCTION  

 
One of the major problems in numerical simulations of 
wave diffusion problems involving infinite domains consist 
on how to deal with the artificial limits introduced by the 
use of finite mesh refinement. These undesired reflections 
waves mask the true solution and override the seismic 
signals.  

To avoid these side effects, researchers used to enlarge 
the computational domain, delaying the backward 
reflections, though increasing the numerical mesh and its 
computational demand. An alternative is to use an 
absorbing technique that reduces the reflection at its 
boundary, simulating an infinite domain. 

 

In the late 70’s, nonreflecting those techniques were 
introduced aiming to treat such problems. Clayton and 
Engquist (1977) proposed the Absorbing Boundary 
Condition (ABC) technique by applying a one-way wave 
equation in the boundary region, which proved to be 
efficient for events not at shallow angles on the contour. 
In the early 80’s, Cerjan et al. (1985) introduced the 
Damping Zone (DZ) concept in which a gradual reduction 
of the wave amplitude is imposed along an absorption 
layer, without any loss of effectiveness due to shallow 
angles of wave incidence (see figure 1). More recently, 
Berenger (1994) proposed the Perfect Matched Layer 
(PML) method for solving electromagnetic and elastic 
wave equations. A new matched medium is designed to 
absorb without reflection the incident waves at any 
frequency and at any incidence angle. Those methods 
are very sensitive to the number of grid points used in the 
absorbing layer, with better results found for larger 
discretization points. Another problem is that the 
coefficients factors can vary from one problem to another. 

This work aims to develop an algorithm that searches for 
optimized factors for DZ and PML coefficients to reach a 
greater absorption at the artificial boundary in acoustic 
wave’s propagation problems using the Finite Differences 
Method in the 2D domain of the time, with a 10ª order 
approximation for the space and a 2ª order for the time. 
The algorithm applies the Golden Section Search 
Scheme for accelerating the convergence. The number of 
grid points at the absorbing boundary layer for the least 
reflected waves inside the medium used is 20. Our goal is 
to enhance and optimize the existing absorbing boundary 
methods in order to minimize the errors associated with, 
computing the best factors and improving the quality of 
the numerical results and reducing its computational 
effort.  

First, the traditional DZ and PML methods are presented 
and optimized aiming to reduce wave reflection at the 
borders, with results shown in terms of the total energy for 
“infinite” and nonreflecting models for varying absorbing 
layers. In addition, the algorithm for computing the best 
factors is presented and various tests are performed in 
order to shown in terms of the time sum of squared 
energy difference between infinite and nonreflecting 
models for varying absorbing layers.  

 
Figure 1. Wave propagation domain with absorbing 

boundary layers. 
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2. DZ OPTIMIZED TECHNIQUE 

 
The original Cerjan’s (1986) method introduces a 
damping zone around the domain consisting of Na points 
where the wave amplitude is absorbed by the relation, 

 

     
2i))(Na(factore=Fac 

                                            (1) 

 
The coefficient factor is 0,015 and it is constant for Na 
Boundary Layer points in the damping layer and i varies 
from 1 to Na.  

In order to improve the original Cerjan’s Method, others 
coefficients factors were calculated varying the number of 
points from 20 to 100 on the boundary layer and 
computing the energy reflection by the square amplitude 
difference at each time step, between the model with the 
infinite domain and the order with the artificial boundary.  

Figure 2 shows a comparison of the amount of energy 
reflection, between the original Cerjan’s method and its 
optimization. It can be seen that the original Cerjan curve 
is constant after 25 grid points on the Boundary Layer, 
while on the optimized one, the error decrease with the 
number of grid points on the boundary layer.  
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Figure 2. Comparison between Standard Cerjan and 
Optimized Cerjan Method. 

 
Another optimization can be done by coupling a factor 
that reduces the propagation velocity. It was verified that 
Cerjan scheme works better in low velocities. The 
equation becomes:  

                                                                   
                                                                                                                                                                                       
                                                                               (2) 
 
 

Where the velocity reductor factor (FRv) follows a 
quadratic form: 

 
 
                                                                              (3) 
 
 

FRv vary from 1.0 (when x=Na) to Fv (when x=1). This 
factor enables a reduction of the wave energy reflection in 
almost 60% compared to original Cerjan for boundary 
layers until 50 points, that is shown in Figure 3. 
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Figure 3. Wave energy reflection using the velocity 
reduction factor 

 
3. PML OPTIMIZED TECHMIQUE 

 
Berenger (1994) developed the PML technique, in which 
a new region that surrounds the FDTD domain is defined, 
where a set of non-physical equations are applied giving 
a high attenuation of the incident waves. For acoustics, 
the 2D linearized continuity and Euler equations take the 
following form at the PML absorbing layer, 

                                                                                                                             
(4) 

                                         (5) 
 

where ρ, p and u


 are, respectively, the medium density 

and the acoustics pressure and vector velocity, while α is 

the attenuation coefficient and B ( =ρc
2

) the medium 
bulk modulus. c is the medium wave speed. 

Differentiating in time and space equations (4) and (5) 
and subtracting the resulting expressions gives the PML 
acoustic equation, 

 

     
  pc=Bpα+pB+α+p 22

ttt

21 
                 (6) 

 
The attenuation coefficient α varies accordingly to, 
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in which the maximum applied absorption rate rPML is 
equal to 1/10 and the exponent k=2. Therefore α 
oscillates from 0 (when x is at the border of the absorbing 
layer, thus satisfying the acoustic wave equation) to 
ln(10)/(Bδt), where δt is the time step and nPML the 
number of PML grid elements. The integer i represents 
the grid element such that       
      

PMLni 1                                                          (8) 

 
An optimization can be done varying those coefficients. In 
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a general form, α can be rewritten as, 
 

         ixfc=iα PML                                              (9) 

 

Changing the values of cPML and the function   ixf , 

for a fixed nPML, improves the effectiveness of the 
absorption, reducing its side effects by increasing the 
absorption rate and using smoother polynomials at the 
absorbing layer. 
 
4. THE MINIMUM SEARCH METHOD 
 

The minimization method of functions used was based in 
the Golden Section Search (Press (2007)), which, from 
three initials points (a,b,c), searches the minimum value 
of a function at the interval (a,c). Given this interval, a 
new point x is chosen, either between a and b or between 
b and c . Suppose that the new point is between b and c. 
Then, f(x) is evaluated. If f(b) < f(x) then the new triplet of 
points is (a,b,x), contrariwise, if f(b) > f(x), then the new 
triplet is (b,x,c). This is done in a manner that the middle 
point of the triplet is always the one with the best 
minimum achieved so far. This process is repeated until 
the distance between the two outer points is tolerably 
small. An example is shown at fig. 4. The initial points are 
1, 3, and 2. The function is evaluated at 4, which replaces 
2; then at 5, which replaces 1; then at 6, which replaces 
4. 

 
 

Figure 4 – Convergence process for a one dimension 
function 

 
The new point x to be tried is that which is a fraction 
0.38197, measuring from the middle point of the triplet, 
into the larger of the two intervals. So, then new point x is 
calculated by: 

 
X=B+0.38197*(c–b)                                            (10) 

 
Or 

 
x=b–0.38197*(b–a)                                             (11) 

 
This fraction is called the golden mean, which guarantees 
the fastest way to achieve the minimum.    

However, the Golden method is applicable only to one 
dimension functions, while the total absorbed energy 
varies with a pair of factors. In other words, it’s a two 
dimension function. The method developed works as 
follows: given an initial pair of factors (x0, y0), x remains 
constant while is searched the value of y which gives the 

minimum of the function at this conditions, at the point (x0, 
y1). Later, the new value of y, y1, remains constant while 
is searched the value of x which gives the minimum of the 
function at this condition, at the point (x1, y1). After that, x 
remains constant at x=x1 and the value of y varies in a 
way that the function value decreases, at the point (x1, 
y2). This procedure is repeated until the difference 
between two successive interactions is smaller than a 
given tolerance. 

 
5. RESULTS 

 
The effectiveness of the algorithm was tested with a 
boundary Layer of 20 points. At time t=0, a Ricker type 
source with 30Hz was generated at the surface of the 
model. As an energy measure, the square of the 
amplitude over the whole domain was taken to evaluate 
the effectiveness of each absorption boundary, 

 

     2(U)=E essEffectiven                                         (12) 

 
5.1. Example 1 – Uniform Medium 

 
As a first example, a 2D square domain with 3000x3000m 
with constant medium velocity of 3000 m/s was used, as 
shown in Figure 1. The region was discretized with 
600x600 points with 5 meters of spacing and was used a 
time step of 0,0002s, to avoid instability and divergence 
problems with the numerical method. The source was 
positioned at the middle top of the domain and the 
frequency was 30Hz. Around this region, a boundary 
layer was created with 20 grid points. The finite 
differences operator used is a second order in time and 
10th order in space operator. The algorithm was applied 
on these boundary layers to compute the best factors. 
The total energy of the wave generated was 7480 m

2. 

Figure 5 shows snapshots of the progression of the wave 
at an uniform medium. 
 
 

 
Figure 5. Amplitudes at progressive time on an 

uniform medium.  
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On figure 6 (a) one can see a plot graph time-Energy. In 
the beginning, the wave generated propagates throw the 
domain without the boundary limits. On the second range, 
the wave reaches the two sides, and on the third the 
bottom. I was solved with PML and Standard Cerjan 
Methods, and also the optimized ones. It´s visible the 
good performing of Boundary absorbing techniques.  

 

 

 
Figure 6. (a) Total energy of each method versus time 

steps in uniform medium and (b) a detail comparing the 
performing of the PML and Dz Methods, with and without 

the optimization. 
 
On figure 6(b) a detail is shown and it can be seen the 
increase of the performance of the optimized methods. A 
detail of the absorption is shown on table 1. 

 
Table 1. Factors used in uniform medium and final energy 

(Time Step = 7000) 
Technique Factor 1 Factor 2 Final 

Energy 
Absorption 

DZ 0.013 1.0 27.468 99.632 % 

DZ 
Optimized 

0.0101 0.5 16.025 99.786 % 

PML 3.55e-8 2.0 20.384 99.727 % 

PML 
Optimized 

1.13e-7 1.056 7.539 99.899 % 

 
5.2. Example 2 – Non-uniform Medium with a salt 
region 

 
On example 2, a simulation of a pre-salt region with an 
heterogeneous medium was done. The same source and 
mesh of example 1 was adopted and a boundary layer 

with 20 grid points. Also, to avoid instability and 
divergence problems with the numerical method, grid 
spacing used was 5 meters and the time step 0,0002 s. 
The algorithm was applied on these boundary layers to 
compute the best factors. The total energy of the wave 
was 17180 m

2
. The domain with the 3 medium types and 

the pre-salt region is shown on figure 7. 
 

 
 

Figure 7. Heterogeneous domain with the three 
different mediums types and a salt region. 

 
The figure 8 shows snapshots of the progression of the 
wave at an heterogeneous medium. Figure 8a shows the 
beginning of the wave propagation at the 2000m/s 
velocity medium. Figure 8b shows the waves being 
absorbed at the domain both sides and reflected by the 
change of mediums, and fig. 8c illustrates the results after 
the absorption at the bottom of the domain.    

 

 
Figure 8. Amplitudes at progressive times with 

nonreflecting boundaries at an heterogeneous medium 
 

Figure 9a shows how the energy vary throw the wave 
propagation. In the beginning, the wave generated 
propagates throw the first domain without reaching the 
boundary limits. The next phases of the graph, show the 
waves reaching the two others domains, the pre-salt and 
the bottom. Even in an heterogeneous media one can see 
the good performance of the Boundary absorbing 
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techniques. On figure 9b a detail is shown and it can be 
seen the increase of the performance of the optimized 
methods. A detail of the absorption is shown on table 1. 
 

 

 
Figure 9. (a) Total energy of each method versus time 

steps in non-uniform medium, and  
(b) a detail showing a comparison between the energy of 

the absorbing Methods at the final steps. 
 

Table 2. Factors used in non-uniform medium and final 
energy (Time Step = 8000) 

 

Technique Factor 1 Factor 2 
Final 

Energy 
Absorption 

DZ 0.013 1.0 256.622 98.506 % 

DZ 
Optimized 

0.0105 0.618 227.234 98.677 % 

PML 3.55e-8 2.0 213.741 98.756 % 

PML 
Optimized 

1.738e-7 1.292 198.493 98.845 % 

 
Comparing example 1 and 2, one can see that the best 
coefficients factors varies from one example to another, 
and that the best method was PML.  
 
6. CONCLUSIONS 
 

An algorithm to compute the best absorbing factors for 
two classical nonreflecting boundary methods – PML, DZ 
– in the FDTD 2D computational domain was presented. 
It has been used 20 points. The problems shown that the 
best coefficients varies from one problem to another.  

This algorithm can be applied to compute the best 
coefficient factors for larger 3D problems in 
heterogeneous media. The steps for solving those 
problems can be summarized as:  

- first, create a reduced 2D version of  the 3D 

problem representing the medium,  source and 
mesh refinement; 

- second, apply the algorithm and find the best 
coefficients absorbing factors for PML and DZ 
Methods, and even which of those two methods 
have better results. 

- take the best method and coefficient factor from 
step 2 and apply to your original 3D problem, and 
solve it in a Finite Difference Scheme. Then the 
algorithm computes the best absorbing factors.  
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