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Abstract

In this paper, acoustic and pseudo-acoustic wave
equations in vertical transverse isotropic media (VTI),
developed by Tariq Alkhalifah (Alkhalifah, 2000), Klíe
and Toro (Klíe and Toro, 2001) and Linbin Zhang
(Zhang et al., 2005) are investigated. It is emphasized
that the study seeks the understanding of the nature of
wave propagation, related to those approaches as well
as the phenomena that control it and its limitations.
The seismic modeling is applied in order to illustrate
the differences among the presented equations.

1. Introduction

The anisotropic seismic modeling is an essencial tool
to study wave propagation characteristics in anisotropic
media. Wave propagation in anisotropic media are
inherently discribed by elastic wave equations, with P-
wave and SV-wave modes coupled. To generate images
of subsurface applying only primary energy of P-wave
mode it is necessary to decouple P-wave and S-wave
modes. As in isotropic media, in anisotropic media it is
possible to decouple P and SV seismic waves (Yan and
Sava, 2009), but the theory involved is more difficult than
that for isotropic media, because it involves the directions
of wave polarizations, which implies in the increasing of
computational cost.

For this reason, Tariq Alkhalifah derived a simple two-
way acoustic wave equation for anisotropic media from a
dispersion relation approximation for transversely isotropic
media (TI) with vertical symmetry axis (VTI) (Alkhalifah,
1998), which can be used for modeling only P-wave modes,
based on setting to zero the shear wave velocity (Vsz) along
the axis of symmetry (Alkhalifah, 2000).

Due to some limitations of the Alkhalifah approximation,
Klíe and Toro (Klíe and Toro, 2001) developed a variant
equation from Muir’s dispersion relation (Conceição, 2011),
but this equation involves space-time mixed derivatives.
Later, Linbin Zhang (Zhang et al., 2005) derived
an acoustic wave equation from Thomsen’s dispersion
relation, being that the features of this equation are the
same as those of Klíe and Toro’s equation.

Other authors have implemented alternative equations in
order to remove mixed detivatives, for instance (Du et al,
2008; Duveneck, et al., 2008). In different way (Duveneck,

et al., 2008) derived coupled first-order and second-order
VTI wave equations starting from Hooke’s law and the
equations of motion with the vertical shear velocity again
set to zero.

In the next topic it is presented a short discussion
concerning anisotropic acoustic wave equations by Tariq
Alkhalifah, Linbin Zhang and Klíe and Toro.

2. P-wave dispersion relations

P-wave phase velocity approximation is important in the
derivation of acoustic approximations to the anisotropic
wave equations. A commom way to obtain wave equations
for P-wave modeling is by introducing the dispersion
relation based on different P-wave velocity approximations.

From (Tsvanskin, 2001) the exact P-SV wave phase
velocity for VTI media is described by:
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The positive sign in front of the radical corresponds to the
P-wave, while the negative sign corresponds to the SV-
wave.

Equation (1) describes P-wave phase velocity as function
of Thomsen’s anisotropic parameters (Thomsen, 1986)
and P-wave (Vpz) and S-wave (Vsz) vertical velocities.

2.1 Alkhalifah’s dispersion relation

Based on equation (1) Alkhalifah derived the simplified TI
acoustic phase velocity approximation shown below,
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Equation (4) is the 2D Alhkalifah’s dispersion relation,
where Vpn is P-wave normal moveout velocity, η the
anellipticity paramater (Alkhalifah, 1998) and ω is the
angular frequency.
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2.3 Muir’s dispersion relation

Like performed previously, starting from Muir’s P-wave
phase velocity approximation (Muir and Dellinger, 1985),
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and using q parametrization (Fomel, 2004), q =
1
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where V2
px = V2

pz(1+2ε) is the P-wave horizontal velocity and
V2

pe(θ) = V2
px sin2(θ) + V2

pz cos2(θ) is the elliptical velocity. The
corresponding dispersion relation to equation (6) is,
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2.2 Thomsen’s dispersion relation

Starting from weak anisotropic approximation (Thomsen,
1986),
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and applying again ~k = ω~p and px =
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V(θ) , pz =
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Equation (9) is the last dispersion relation shown here.
Figure 1 shows different P-wave phase velocities of the
Greenhorn-shale anisotropy. According to figure 1(b),
Alkhalifah’s phase velocity approximation provides an
appropriate estimate for angles below 30o, being that for
angles larger than 30o does not exceed the relative error
of 0.3%. On the other hand, Thomsen’s approximation
indicates increasing error between 0.1% and 1.25%, which
decreases around 60o and 90o. Muir’s approximation
shows similar behaviour as Thomsen’s approximation.

3. Acoustic VTI wave equations

3.1 Alkhalifah’s Formulation

To achieve acoustic VTI wave equations, it is introduced
the following operators,

~∇Φ(~r, t) = i~kΦ(~r, t) ,
∂Φ(~r, t)
∂t

= −iωΦ(~r, t). (10)

where Φ(~r, t) = ei(~k.~r−ωt).

Now, multiplying both sides of equation (4) by Φ(~r, t) and
applying relation (10):
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(a) Phase velocity approximations

(b) Phase velocity relative error.

Figure 1: Phase velocity approximation and relative error of
different phase-velocity approximations for the Greenhorn-
shale. The parameters are ε = 0.255, δ = −0.051,Vpz =

3094m/s,Vsz = 1509m/s, ρ = 2370 Kg/m3.

P(x,z, t) =
∂2Φ(x,z, t)

∂t2
(12)

Equations (11) and (12) together are called pseudo-
acoustic wave equation, where P(x,z, t) is the pressure
field. The normal moveout velocity (Vpn) and anellipticity
coefficient can be written as a function of the Thomsen’s
parameters such as (Alkhalifah, 1998): V2

pn = V2
pz(1 + 2δ);

η = ε−δ
1+2δ .

The pseudo-acoustic stability restriction in Alkhalifah’s
formulation is ε ≥ δ or η ≥ 0.

3.2 Kĺıe’s Formulation

In a similar way as done previously, but using now equation
(7), and again applying relation (10), follows that:
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P(x,z, t) =
∂2Φ(x,z, t)

∂t2

where the stability restriction is η > − 1
4 .

3.3 Zhang’s Formulation

Finally, the last acoustic wave equation to VTI media
studied in this paper was proposed by Zhang et al. (Zhang
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et al., 2005) in frequency domain. However in this work the
same formulation will be shown in the time-space domain.
So, multiplying again both sides of equation (9) by function
Φ(x,z, t) and using the gradient and temporal derivative
operators (10):

∂2P(x,z, t)
∂x2 +

∂2P(x,z, t)
∂z2 = V2

pz(1 + 2ε)
∂4Φ(x,z, t)

∂x4

+V2
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∂z4 + 2V2
pz(1 +δ)

∂4Φ(x,z, t)
∂x2∂z2 (14)

P(x,z, t) =
∂2Φ(x,z, t)

∂t2

it should be observed that stability restriction is |ε | << 1,
|δ| << 1.

4. P-Wave Modeling

4.1 Numerical Solution for Alkhalifah’s Formulation

The equations (11) and (12) for pseudo-acoustic
formulation are discretized applying second order
central finite-difference in space and time, as follows:
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The numerical stability used by Alkhalifah are given by the
Courant-Friedrichs-Lewy (CFL) condition (Alhalifah, 2000)
as:
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4.2 Numerical Solution for Zhang and Klie’s Formulation

In an analogous way we discretized system equations (13)
by second order finite-difference scheme in space and
time, such that:
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Zhang’s formulation, system equations (14), is discretized
likewise equation (18), However, coefficients b’s are given
by:

b1 = 1
b2 = 1
b3 = V2

pz (i,k)(1 + 2εi,k)

b4 = V2
pz (i,k)

b5 = 2V2
pz (i,k)(1 +δi,k)

Rewriting equation (18) in matrix notation:

MPn = KΦn (19)

M and K are coefficient matrices, while Pn e Φn are
vectors. Equation (19) provides solution for the pressure
field Pn at the current time step n. Known the pressure
field P(x,z, t), Φ(x,z, t) at the next time step n + 1 is given by
equation (15). In summary, the implementation requires
the numerical solution of a pentadiagonal linear system
(Klíe and Toro, 2001). Once P(x,z, t) is known in the
domain, Φ(x,z, t) can be update at the new step, being it a
recursive update process. The numerical stability for Klie’s
formulation are given (Klíe and Toro, 2001) by:

(1 + 2η)V2
pn + V2

pz +
2ηV2

pnV2
pz
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For Zhang’s formulation, the numerical stability is the same
as to Alkhalifah’s equation.

5. Synthetic Data Examples

5.1 Alkhalifah’s Formulation

The first example to be analyzed considers a
homogeneous medium (Greenhorn shale), the same
used for the evaluation of velocity approximations in
section 2.

Figure (2) shows wavefronts for anisotropic and isotropic
media at time 0.24s generated by a pressure source
(Ricker’s pulse, 60Hz) in VTI media specified by the
vertical velocities Vpz = 3094m/s, Vsz = 1509m/s, Thomsen
anisotropic coefficients, ε = 0.255, δ = −0.051 and density
ρ = 2370 Kg/m3. The geological model has a dimension of
1.35 Km x 1.35 Km, grid spacing and time of h = 4.5 m and
∆t = 0.6 ms respectively. Figure 2(a) displays a diamond-
shape wavefront generated by Alkhalifah’s formulation,
this artifact represent a SV-wave present in Alkhalifah’s
formulation due to velocity approximation (3)(Grechka
et al., 2004; Conceição, 2011). Because this event
Alkhalifah’s formulation is called Pseudo-Acoustic.
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(a) Pressure field in anisotropic media

(b) Pressure field in isotropic media

Figure 2: Snapshots for the pressure field in homogeneous
media - Pseudo-Acoustic Formulation.

Figure 3: Group velocity wavefronts; black curves
represents exact velocity and red curves Alkhalifah’s
approximation. Inner curves corresponds to SV-wave and
outer curves to P-wave.

This occurs because the P-SV waves are coupled, so when
Alkhalifah held simplification (3), which also occurs for the
SV phase velocity, equation (21) becomes:

lim
Vsz→0

V2
sv,ph(θ) = V2

pz

(
1 + 2ε sin2 θ−

1
2
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−
1
2
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)2
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Then, the calculation of wavefronts according to (Tsvankin,
2001), leads to:

Vgr
p,sv(φ) = V ph

p,sv(θ)~n +
∂V ph

p,sv(θ)

∂θ

∂~n
∂θ

(22)

where, ~n = (nx,nz) = (sin(θ),cos(θ)) is the normal wavefront
vector, Vgr

p,sv and V ph
p,sv are group velocity and phase velocity

of P-wave and SV-wave respectively. The wavefronts for
equation (22) can be seen in figure (3), being that it is
verified the appearance of the SV wave in figure 2(a).

Another point mentioned by Grechka et al. (Grechka et
al., 2004) is the extreme SV-wave anisotropy generated
by Alkhalifah’s formulation. From Tsvankin and Thomsen
(Tsvankin and Thomsen, 1994) SV-wave anisotropy
parameter is:

σ =

(
Vpz

Vsz

)2
(ε −δ). (23)

Thus, the Alkhalifah’s formulation makes the SV-wave
anisotropy parameter tend to infinite (σ = ∞). The
example of figure 4 shows what happens in a complex
media. In this example the source is placed in the first

(a) P-wave vertical velocity (Vpz)
model.

(b) Epsilon (ε) anisotropy model.

(c) Delta (δ) anisotropy model.

Figure 4: Anticlinal Model - P-wave vertical velocity and
anisotropy coefficients.

isotropic layer; figure (5) shows snapshots for different
times for pseudo-acoustic formulation. In Figure 5(b) it is
observed spurious events generated by the SV-wave in the
medium, while for the same snapshot generated by the
VTI elastic formulation (Faria and Stoffa, 1994) it is not
observed the presence of such an event. The creation
of spurious artifacts found in the pseudo-acoustic equation
can generate undesirable events, those events that should
only be related to primary energy and P-wave modes.

Twelfth International Congress of The Brazilian Geophysical Society



CONCEIÇÃO; DORS; MANSUR 5

(a) Snapshot for the pressure field at t = 1.62s.

(b) Snapshot for the pressure field at t = 2.27s.

Figure 5: Snapshots for the pressure field at different times.
The black arrows indicates spurious events generated by
the presence of SV-wave.

(a) Snapshot for the vertical stress (σzz) field at t = 1.62s.

(b) Snapshot for the vertical stress (σzz) field at t = 2.27s.

Figure 6: Snapshots for the vertical stress (σzz) at different
times.

5.2 Zhang and Klie’s formulations

For Zhang’s formulation and Klie’s formulation the same
homogeneous medium (Greenhorn shale) will be employed
in the analysis. Figure (7) shows the snapshots for both
formulations. The formulation of Zhang and Klie definitely
excludes the SV-wave in the pseudo-acoustic formulation,

a fact borne out by plotting group wavefronts, figure (8),
from the relations (5) and (8).

(a) Snapshot for the pressure field at 0.18s - Zhang’s
formulation

(b) Snapshot for the pressure field at 0.18s - Klíe’s
formulation

Figure 7: Snapshots for the pressure field in homogeneous
media - Zhang and Klie’s formulation

Figure 8: P-wave group velocity wavefronts; blue
curve represents Muir’s approximation and green curve
Thomsen’s approximation.

6. Summary and Conclusions

In this paper different approximations to model acoustic
wave propagation in transverse isotropy media with
vertical symmetry axis (VTI) were presented, namely
the formulations proposed by Tariq Alkhalifah, Klie and
Toro and Zhang. All wave equations were derived from
approximations of phase velocity for the P-wave.

It was seen that the formulation proposed by Tariq
Alkhalifah is not entirely acoustic (i.e., includes not only P-
waves), creating regions with the presence of SV waves,
and creating extreme anisotropy (σ =∞). Both the extreme
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anisotropy, and the generation of SV waves, are due to
the simplification made (Vsz = 0) for the approximation of
analytic phase velocity, which had the purpose of obtaining
an equation that simulates only the field of the P wave in
anisotropic medium.

The generation of SV waves caused by pseudo-acoustic
formulation evidently can produce relevant difficulties in
imaging processes.

The equations proposed by Klie and later on by Zhang
eliminate artifacts of the pseudo-acoustic approach, but
with the disadvantage of requiring the solution of a linear
system at each time step. However, the stability conditions
η > − 1

4 for the Klie’s equation, |ε | � 1 and |δ| � 1 for the
Zhang’s equation make major changes on the anisotropy
parameters.
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