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Abstract

Hydrocarbon traps are generally located beneath
complex geological structures. Such areas contain
many seismic diffractors that carry detailed structure
information in the order of the seismic wavelength.
Therefore, the development of computational
resources capable of detecting diffractor points
with a good resolution is desirable, but has been
a challenge in the area of seismic processing. In
this work, we present a method for the detection of
diffractor points in the common-offset gathers domain.
In our approach, the diffraction imaging is based on
the diffraction operator, which can be used in both
the time and depth domains, in accordance with the
complexity of the area. This method, which does
not require any knowledge apart from the migration
velocity field (i.e., rms velocities or interval velocities)
applies pattern recognition to the amplitudes along
the diffraction operator. Numerical examples using
synthetic and real data demonstrate the feasibility of
the technique.

Introduction

It is well known that hydrocarbon reservoirs commonly are
located in geological stsructures that are difficult to image
with seismic methods and obtain high resolution. This
structures include common hydrocarbon traps, such as
faults, pinch-outs, unconformities, salts domes, and other
structures the size of which is of the order of the wavelength
(Trorey, 1970).

Because of the importance of these types of structures,
several methods for imaging diffractions have been
developed in the recent past. The first authors to look into
the topic were Landa et.al. (1987) and Landa and Keydar
(1998), who proposed and refined a detection method
related to specific kinematic and dynamic properties of
diffracted waves. Another approach (Moser and Howard,
2008) is based on suppressing specular reflections to
image diffractions in the depth domain. Most recently,
Zhu and Wu (2010) developed a method based on the
local image matrix (LIM), which uses an image condition in
the local incident and reflection angles for source-receiver
pairs to detect diffractions.

In this work, we propose a diffraction detection method
based on an amplitude analysis along the elementary
diffractions (Tabti et al., 2004). This method does not
require any knowledge apart of from the migration velocity
field, i.e., rms velocities or interval velocities depending on
the complexity of the area. It applies pattern recognition
to the amplitudes along the diffraction operator. Numerical
examples on synthetic and ground penetrating radar (GPR)
field data demonstrate the feasibility of the method.

Method

Diffraction operator

Tabti et al. (2004) introduced amplitude analysis along
elementary diffractions for Fresnel aperture specification.
As illustrated in Figure 1a, the traveltime of an elementary
diffraction associated with a reflection point is tangent to
the reflection traveltime at the stationary point (location
of the specular reflection event). More specifically, in
limited bandwidth situations, this tangential point becomes
a tangential contact region, which defines the minimum
aperture for true-amplitude Kirchhoff migration (Schleicher
et. al., 1997). Tabti et al. (2004) named it the Fresnel
aperture due to its close relationship to the Fresnel zone.
For image point off any reflectors or diffractors, below
referred to as “void image points”, there is no such region.
The traveltime of the elementary diffraction associated with
a void image point may cross some reflection events, but
won’t be tangential to any events (see Figure 1b), except
for extremely rare coincidental situations.

(a) (b) (c)

Figure 1: (Illustration of the diffraction operator for (a) a
reflection point and (b) a void image point. Top: amplitude
along the diffraction operator; center: diffraction traveltime
and seismic event; bottom: image point and ray family.
(c) Illustration of the diffraction operator for a diffraction
point. Top: amplitude along the diffraction operator; center:
diffraction traveltime and seismic event; bottom: image
point and ray family.

Tabti et al. (2004) described amplitude analysis along
elementary diffractions by means of a diffraction operator
D. This operator derives from the Kirchhoff depth migration
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integral (Schleicher et. al., 1993)

I(M) =
∫

A f

d2ξ W (M,ξ )∂tU(ξ , t)|t=τD(M,ξ ) (1)

where U(ξ , t) is the seismic data measured at ξ , τD(M,ξ )
is the traveltime of the elementary diffraction of M, A f is
the Fresnel aperture, and W (M,ξ ) is a weight function.
For simplicity, we omit the weight function in the present
study, i.e. W (M,ξ ) = 1. Integration variable ξ is the
horizontal coordinate of the seismic section to be migrated,
for instance the midpoint coordinate for a common-offset
section or the receiver coordinate for a common-shot
section.

Instead of performing the summation, the diffraction
operator D(M) at an image point M collects a single valued
curve (or surface, in the 3D case), defined as a function
of the integration variable ξ . Its value at ξ is the amplitude
the stack in equation 1 will consider at ξ . This value defines
the amplitude of the elementary diffraction measured at ξ .
More specifically,

D(M,ξ ) =W (M,ξ )∂tU(ξ , t)|t=τD(M,ξ ) . (2)

In this paper, we restrict ourselves to a simplified version
of the diffractor operator proposed by Tabti et al. (2004),
based on the Kirchoff time migration integral for common-
offset configuration. Therefore, the elementary diffraction
traveltime τD(M,ξ ) is given by (Landa et.al., 1987)

τD(M,ξ ) =

√

(
t0

2
)2+(

ξ −h

2v
)2+

√

(
t0

2
)2+(

ξ +h

2v
)2 (3)

where t0 is zero-offset time for any point at subsurface, h is
the half-offset and v is medium velocity.

Tabti et al. (2004) also noted that in the case of a
diffractor point (either a point scatterer or an edge), the
corresponding elementary diffraction corresponds to the
scattered seismic event. The Fresnel aperture then
extends theoretically to infinity, regardless of the frequency
content of the source pulse. Figure 1c illustrates the
diffraction operator at a diffraction point.

Figures 1 form the basis of our diffraction imaging algorithm
explained in the next section. The main idea of our
detection method is to classify every point in the image
domain M as a diffractor, reflector or void point by means of
the characteristics of its diffraction operator D(M,ξ ). The
approach consists in straightforward classification using
a well-established pattern-recognition technique called k-
nearest-neighbors (kNN).

Diffraction imaging by pattern recognition

Pattern recognition aims at classifying data (patterns)
based either on a priori knowledge or on statistical
information extracted from the patterns (Duda and Hart,
1973; Theodoridis and Koutroumbas, 1999). Pattern
recognition techniques have found applications in various
areas, for instance, decision making, inspection of objects,
and automatic character recognition (Theodoridis and
Koutroumbas, 1999).

The mathematical tool to achieve this aim is called a
classifier. Suppose we are faced with the problem to

classify a certain set of patterns into N classes, w1, · · · ,wn.
Let x1, · · · ,xp ∈ Rn be samples of patterns whose class
is already known, and Ci ⊆ {x1, · · · ,xp} be a subset of
patterns associated with class wi such that C j ∩Ci = /0 for
i 6= j, i.e., there are no subsets that fall into two different
classes at the same time. Given an arbitrary pattern x, a
classifier aims at associating x with one of the N classes.
In this work, we are only concerned in imaging diffractions.
Therefore we use two classes (N = 2): the diffraction class
C0 and the non-diffraction classC1 (that includes both noise
and reflection image points). We also restrict ourselves to
the so-called k-nearest-neighbor (kNN) classifier, because
of its simple implementation.

The kNN classifier is a supervised method to solve
problems in pattern recognition. It is a method for
classifying objects based on a certain distance measure
and a fixed set of samples in the feature space for which
the associated label of class is already known. The
development of the kNN classifier was inspired by the
technique for the estimation of a non-parametric probability
density function (PDF) called k-nearest-neighbor density
estimation, which is basically a variation of the histogram
approximation of an unknown PDF. Moreover, although no
assumptions about PDFs need to be made, the strategy
used by the kNN model to classify patterns reminds of the
well-known Bayes classification rule (Duda and Hart, 1973;
Theodoridis and Koutroumbas, 1999).

Let k ≤ p be a positive fixed integer and dist a distance
measure in Rn. Then, the kNN classification process is
given by the following rules (Theodoridis and Koutroumbas,
1999)

• Find the k nearest neighbors of x in the set {x1, · · · ,xp}
in terms of their distances dist(x,xi), for i = 1, · · · , p.
Let the symbols x̃1, · · · , x̃k ∈ {x1, · · · ,xp}, with x̃i 6= x̃ j for
i 6= j, denote those k nearest neighbors.

• Identify the number ki of patterns x̃i among these
k nearest neighbors that belong to class wi for i =
1, · · · ,N.

• Assign x to the class w j with the maximum number k j
of samples.

Figure 2 shows examples of kNN classification for k= 1 and
k = 3.

 1st nearest 

 neighbor

k=1

 1st nearest 

 neighbor

 2nd nearest 

 neighbor

 3rd nearest 

 neighbor

k=3

Figure 2: Graphical illustration of kNN classification. (a)
For k= 1 (one nearest neighbor) the triangle is classified as
circle. (b) For k= 3 (three nearest neighbors) the triangle is
classified as diamond because two of three neighbors are
diamonds.

Since the results of a kNN model depend of choice of the
number k of nearest neighbors, techniques to select an
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appropriate parameter k like, for example, cross-validation,
can be employed. Also, the performance may vary as
a function of the distance measure considered. Usually,
Euclidean distance is used as the distance metric. As
with all supervised models, the accuracy of the kNN
classifier depends on the given training set. If non-
representative samples of classes are used as training
data, the performance of kNN classification can be severely
degraded.

In the simulations described in the Numerical Examples
section, we have employed a value of k = 1 and the
Euclidean distance measure.

Results and discussion

Synthetic example I: Model with three diffractors

The first model consists of two diffraction points and one
dipping reflector with an endpoint in the center of the
model, buried in a constant-velocity background with v =
2000 m/s (see Figure 3).

2.0

1.5

0.5

4.0

z

5.02.5 x

Figure 3: Model with three diffractors.

The synthetic dataset was generated by Kirchhoff
modeling. It simulates a zero-offset section with 500
source-receivers pairs spaced at 10 m covering an
extension of 5000 m. To the synthetic data we added
random noise with a signal-to-noise ratio (S/N) of 100 with
respect to the reflection event, which corresponds to a S/N
of about 10 for the diffraction events (see Figure 4).
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Figure 4: Zero-offset dataset obtained by Kirchhoff
modeling.

Conventional Kirchhoff migration of these data produces
the image shown in Figure 5. While this image contains all
three diffraction points, the two isolated diffraction points
have rather low amplitudes and would be hard to visualize
in noisy data. Only the endpoint of the reflector is clearly
identifiable as a diffraction point. Figure 6 shows the
diffraction operators of image locations associated to (a)
a void (x = 2.5 km, t = 0.8 s), (b) a reflection (x = 3.5 km,
t = 1.73 s) and (c) a diffraction (x= 2.5 km, t = 0.5 s) point,
respectively.

As suggested by Landa et.al. (1987), we normalized
the dataset trace-by-trace using its envelope (Figure 7).
Figure 8 shows the diffraction panels for the profile located
at x= 2.5 km obtained from the raw data Figure 8a and from
the normalized data Figure 8b. The diffraction amplitudes
(flat events) are equalized to the reflections (other events).
For this case, we started by devising a kNN classifier using
only two classes (N = 2): the diffraction class C0 and
the non-diffraction class C1 (that includes both reflection
and void image points). To train the kNN classifier, we
used the diffraction operators evaluated at the two isolated
point diffractors as training patterns for the diffraction class.
The training patterns for the non-diffraction class were the
diffraction operator at several locations, including reflector
and void image points. We then applied the so-trained
kNN classifier to the diffraction operators of the whole
normalized dataset. The result is depicted in Figure 9.
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Figure 5: Time-migrated image of dataset from Figure 4.

We see that the method has correctly identified and
positioned all three diffractor points in the model, i.e., the
two isolated point diffractors used for the training and also
the tip of the reflector not used in the training process.
Moreover, it has not misidentified any additional points as
diffractions.

Synthetic example II: Model with thirteen diffractors

For a more meaningful test, we applied then both methods
to a more complex model consisting of 13 diffraction points.
There are 4 isolated point scatterers at depths 0.3 km and
0.5 km, 4 tips of reverse faults at 0.7 km and 1.0 km,
and 5 tips of normal faults at 2.0 km and 2.3 km depth
(see Figure 10). They are buried in a constant-velocity
background with v = 2000 m/s covering an extension of
8 km in the x direction. The maximum depth of the model
is 4 km.

Again, we generated the zero-offset data by Kirchoff
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Figure 6: Diffraction operators of image locations in
Figure 5 associated to (a) a void (x = 2.5 km, t = 0.8 s),
(b) a reflection (x = 3.5 km, t = 1.73 s) and (c) a diffraction
(x= 2.5 km, t = 0.5 s) point.
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Figure 7: Normalized dataset.

modeling, this time using 800 source-receiver pairs spaced
by 10 m with a Ricker wavelet of dominant frequency 12 Hz.
Additionally, we added random noise with a signal-to-noise
ratio of 100. The generated data and its time-migrated
image are depicted in Figures 11 and 12. While the edge
diffractors are clearly identifiable in the migrated image in
Figure 12, the resolution is insufficient to clearly distinguish
the point diffractors at the top of the model. Figure 13
shows the result of the diffraction imaging approach using
pattern recognition. For the training of the kNN classifier we
used again the points in the first model as described above.
From Figure 13, we see that he kNN classifier correctly
identified all 13 diffraction points are clearly resolved.
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Figure 8: Diffraction panels at 2.5 km obtained from the (a)
raw data and (b) normalized data.
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Figure 9: Image points classified as belonging to the
diffraction class by the kNN classifier.

It is important to note that the location of the diffractions
generated by the normal faults have lower resolution when
compared to the others (some smearing can be seen).
Other numerical tests (not shown here) indicate that this
resolution loss is systematic and can be related to the dip
of the faults.

Real data example: Ground Penetrating Radar dataset

For a more meaningful test, we applied this method to GPR
data. The data set is from a survey conducted over four
metal drain pipes crossing under a road at the University
of Houston Coastal Center, located in La Marque, Texas,
United States (Figure 14a). Since the survey line was
perpendicular to the direction of the pipes, prominent
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Figure 10: Model with thirteen diffractors.
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Figure 11: Synthetic zero-offset data for the model of
Figure 10.
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Figure 12: Time-migrated image of the data in Figure 8.

diffractions from the pipes occur. Because of the high
reflectivity and attenuation of metal, GPR reflections from
the pipes occur only from the exterior of the pipes and
not from inside de pipes (Zeng and McMechan, 1997).
Figure 14b shows the 250 MHz GPR profile acquired. The
distance between the transmitter and reciever antennas
was 0.28 m (half-offset 0.14 m), and the interval between
traces was 0.05 m. A total of 445 traces were collected
along the 22.25 m survey line. The length of the time
window was 99 ns and the number of samples per trace
was 247, resulting in a time sampling rate of 0.4 ns.
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Figure 13: Diffraction locations by kNN classifier. we can
see that all 13 diffraction points were indentified.
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Figure 14: (a) Metal pipes located in La Marque, Houston,
Texas, United States. (b) 250 MHz GPR profile showing
diffractions from the pipes.

Figure 15a shows the normalized profile for Figure 14b.
Figure 6(b) shows the diffraction panels for the profile
located at x= 10 m obtained from the normalized data (see
Figure 14a). The time migration section using Kirchhoff
migration is showing in Figure 15a. The velocity used for
migration was 0.088 m/ns (0.88× 10

8 m/s). This velocity
collapsed diffraction and is within the expected range for
soil mixtures. Figure 15b shows the result of the diffraction
imaging approach using pattern recognition with the kNN
classifier trained on the first synthetic data set.

As we can see from Figure 16b, the application of
the so-trained kNN classifier to real GPR field data
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Figure 15: (a) Normalized GPR data. (b) The diffraction
panel for the profile located at x= 10 m.
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Figure 16: (a) Time- migration profile. (b) Four diffraction
locations identified by kNN classifier.

was successful. Comparing the migrated section (see
Figure 16a) with the classified section (see Figure 16b) we
can see that the kNN classifier did not produce any false
positives and the four diffractions were clearly identified.

Conclusions

In this work, we used the diffractor operator proposed
by Tabti et al. (2004) as a tool for diffraction imaging.
It consists in a straightforward application of a pattern
recognition technique to identify and distinguish diffraction
events from reflection events and noise areas by their
amplitude pattern. After training with selected diffraction
operators pertaining to a synthetic data set from a very
simple synthetic model, the kNN classifier was able to
correctly detect all diffraction points in a considerably more
complicated model and in a real GPR dataset, not missing
a single point and not creating a single false positive.
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