
3D Complex Padé FFD migration: A comparison of splitting techniques
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Abstract

Three-dimensional wave-equation migration
techniques are quite expensive because of the
huge matrices that need to be inverted. Many
techniques have been proposed to reduce this cost
by splitting the 3D problem into a sequence of 2D
problems. We compare the performance of splitting
techniques for stable 3D Fourier Finite-Difference
(FFD) migration techniques in terms of image quality
and computational cost. The FFD methods are
complex Padé FFD and FFD plus interpolation, and the
compared splitting techniques are two and four-way
splitting as well as alternating four-way splitting,
i.e., splitting into the coordinate directions at one
depth and the diagonal directions at the next level.
From numerical examples in homogeneous and
inhomogeneous media, we conclude that alternate
four-way splitting yields results of the same quality as
full four-way splitting at the cost of two-way splitting.

Introduction

Because of its superiority in areas of complex geology,
wave-equation migration is substituting Kirchhoff migration
in practice. However, while Kirchhoff migration counts
on more than 30 years of technological development,
wave-equation migration methods still need to be
improved in various aspects. One of these aspects is
the efficient implementation of three-dimensional wave-
equation migration.

The application of a three-dimensional wave-equation
migration technique adds the problem of computational
cost to those of stability and precision of the chosen
migration algorithm. To speed up migration techniques
like finite-difference (FD) (Claerbout, 1971) or Fourier finite-
difference (FFD) migration (Ristow and Rühl, 1994), a
technique known as splitting is frequently used. In this
context, splitting means the separation of a single-step 3D
migration into two 2D passes within planes parallel to the
horizontal coordinate axes, usually the inline and crossline
directions (Brown, 1983).

When splitting is applied to the implicit FD migration
operator so that the equations are solved alternatingly
in the inline and crossline directions, the resulting FD
scheme is known as an Alternating-Direction-Implicit (ADI)
scheme. This procedure has the drawback of being
incorrect for strongly dipping reflectors, resulting in large

positioning errors for this type of reflectors when the dip
direction is away from the coordinate directions and thus
outside the migration planes. This imprecision leads to
numerical anisotropy, i.e., a migration operator that acts
quite differently in different directions.

To improve this behaviour while retaining the advantages
of a rather low computation cost, different procedures have
been proposed. Ristow (1980, see also Ristow and Rühl,
1997) proposed to perform, in addition to the 2D migration
in the coordinate planes, also 2D migrations in the diagonal
directions between the coordinate axes. Kitchenside
(1988) used phase-shift migration plus an additional FD
propagation step of the residual field to reduce the
splitting error. Graves and Clayton (1990) proposed the
implementation of a phase-correction operator using FD
and incorporating a damping function to guarantee the
stability of the 3D FD migration scheme.

Inverting the idea of Kitchenside (1988), who propagated
the field using phase shift and the residual using FD, Li
(1991) proposed to use conventional FD migration plus
a residual field correction by phase shift to improve the
migrated image quality. Without any need to modify
the conventional 3D FD migration, the Li correction adds
a phase-shift filter at certain steps of the downward
extrapolation. This technique corrects not only for the
splitting error, but also for the positioning error of steeply
dipping reflectors.

Biondi (2002) showed that FFD migration is more precise
than other methods that use implicit finite differences like
pseudoscreen propagators (Jin et al., 1999) and high-
angle screen propagators (Xie and Wu, 1998). Given
that the computational complexity of all three methods is
approximately the same, FFD migration is more attractive
than the others. Unfortunately, when conventional FFD
migration is applied in the presence of strong velocity
contrasts, it can generate numerical instabilities, too.

To overcome the problem of instabilities in models with
strong lateral velocity contrasts, Biondi (2002) presented a
correction to the FFD method that avoids stability problems.
To derive it, he adapted a theory of Godfrey et al. (1979)
and Brown (1979), which improves the stability of the 45

◦

equation. The corrected FFD method is unconditionally
stable for arbitrary velocity variations, as much in the
velocity model as in the reference velocity. Particularly,
and differently from conventional FFD migration, it is
unconditionally stable even if the reference velocity is
smaller than the model velocity. This new property
allows for the application of the interpolation technique,
conventionally used to improve phase-shift and split-step
migration (Gazdag and Sguazzero, 1984) but impossible
in FFD migration, because it needs propagation with a
larger and a smaller reference velocity. The resulting
migration technique is called FFD plus interpolation, or
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Figure 1: Impulse response of FFD migration using
conventional two-way splitting; p= 0.75.

shortly FFDPI.

Another, computationally less expensive method to
stabilize FFD migration in the presence of strong lateral
velocity contrasts was proposed by Amazonas et al. (2007).
It substitutes the real Padé approximation (Bamberger
et al., 1988) used in the derivation of FFD migration
(Ristow and Rühl, 1994) by its complex version (Millinazzo
et al., 1997). In this way, the incorrect treatment of
near horizontal and slightly evanescent waves of the real
Páde approximation is improved, leading to a more stable
FFD algorithm, shortly referred to as complex Padé FFD
(CPFFD) migration.

In this work, we study possibilities of efficiently
implementing these stable FFD migration techniques
in 3D. We implemented and compared splitting techniques
for FFDPI (Biondi, 2002) and CPFFD (Amazonas et al.,
2007) migration. Our numerical tests indicate that a
very robust, highly efficient, and satisfactorily accurate
method is alternate four-way splitting, i.e., splitting into the
coordinate directions at one extrapolation step and into the
diagonal directions at the next step.

Numerical experiments

Tests in a homogeneous medium

To study the numerical anisotropy of FFD migration
operators after splitting, we calculated impulse-responses
for zero-offset migration in a homogeneous medium with
velocity 2.5 km/s. The source pulse was a Ricker wavelet
with central frequency 25 Hz, with its centre positioned at
an arrival time of 0.56 s. The migration grid was ∆x= ∆y=
12.5 m, and ∆z = 10 m. All our examples used a complex
Padé implementation of FFD migration with 3 terms in the
series. The value of the reference velocity was chosen as
cr = 1875 m/s, i.e., p= cr/c(x) = 0.75.

Figure 1 shows one vertical and three horizontal cuts
through the impulse response of complex Padé FFD
migration using conventional two-way splitting. The red line
in the top left figure indicates the true theoretical position
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Figure 2: Impulse response of FFD migration using
conventional four-way splitting; p= 0.75.

of the event, given by the half-circle z=
√

(cte)2− (x− xs)2,
where te is the observation time of the event in the data,
here 0.56 s, and xs is the source position, here the centre of
the image, i.e., xs = 1850 m. The non-circular appearance
of this line in Figure 1 is caused by the overstretched
vertical axis. For a better comparison, we will present all
other impulse responses below in the same way.

In the vertical cut (top left), only a slight deformation from
circular shape is visible, which is due to the cut being within
the coordinate plane, where the errors are the smallest.
Note that the amplitude decay at high propagation angles is
partly caused by the source implementation, which did not
use the amplitude correction of Wapenaar (1990). In the
deepest horizontal cut (bottom right), i.e., for propagation
directions close to the vertical axis, we observe the
well-preserved circular shape of the impulse response.
However, the shallow and, principally, medium horizontal
cuts reveal a visible deformation, indicating a quality loss
for higher propagation angles. Also note the amplitude
loss in the directions of the coordinate axes that is visible
in the shallow and medium horizontal cuts. The observed
behavior will be emphasized in media with strong lateral
variations, where much smaller values of p will occur.

Figure 2 shows the impulse response of FFD migration
using conventional four-way splitting. The circular shape
of the impulse-response has been nicely recovered by the
application of the two additional differential operators in
the diagonal directions. Also, the amplitude loss in the
coordinate directions is no longer visible. Note that this
image has about twice the computational cost of the one in
Figure 3.

Figure 3 shows the impulse response of CPFFD migration
using alternating four-way splitting, i.e., two-way splitting
in the coordinate directions at one depth level and in the
diagonal directions at the next depth level. It is hard
to spot any difference to the result of complete four-way
splitting of Figure 2. The circular format of the operator
is almost perfect, and even the slight amplitude loss along
the coordinate axes is as well recovered as by complete
four-way splitting. Note that this image has about the same

Twelfth International Congress of The Brazilian Geophysical Society



COSTA, MONDINI, SCHLEICHER, NOVAIS 3

0

500

1000

1500

P
ro

fu
n
d
id

a
d
e
�[
m

]

0 1000 2000 3000
Distancia�[m]

0

1000

2000

3000

D
is

ta
n
c
ia

�[
m

]

0 1000 2000 3000
Distancia�[m]

0

1000

2000

3000

D
is

ta
n
c
ia

�[
m

]

0 1000 2000 3000
Distancia�[m]

0

1000

2000

3000

D
is

ta
n
c
ia

�[
m

]
0 1000 2000 3000

Distancia�[m]

Figure 3: Impulse response of FFD migration using
alternating four-way splitting; p= 0.75.
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Figure 4: Impulse response of FFDPI migration using
conventional two-way splitting, with interpolation between
p= 0.9 and p= 1.1.

computational cost as the one obtained with conventional
two-way splitting of Figure 1.

Figure 4 shows the impulse response of FFDPI migration
using conventional two-way splitting, with interpolation
between wavefields obtained for p = 0.9 and p = 1.1. We
chose these values to reflect the fact that for FFDPI,
generally reference velocities closer to the medium velocity
are available for interpolation. We observe a good
preservation of the circular shape, particularly in the
horizontal cuts. In the vertical cut, we note that the
wavefront lags slightly behind the true position, starting
already at rather low propagation angles of about 35◦. The
amplitude decay for high propagation angles is reduced
as compared to FFD, probably because the reference
velocities are closer to the medium velocity than in the
previous examples. Finally, the shallowest cut exhibits
some numerical dispersion, causing a distorted pulse
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Figure 5: Impulse response of FFDPI migration using
alternating four-way splitting, with interpolation between
p= 0.9 and p= 1.1.

shape.

Figure 5 shows the impulse response of FFDPI migration
using alternating four-way splitting, with interpolation
between wavefields obtained for p = 0.9 and p = 1.1.
Almost no improvement over the conventional two-way
splitting result of Figure 4 is visible.

Tests in an inhomogeneous medium

For a more realistic test of the different splitting techniques
for FFD migration, we calculated zero-offset impulse
responses for the EAGE/SEG salt model. Here, we used
a seismic pulse in the centre of the model, described by a
Ricker wavelet with central frequency of 15 Hz, dislocated
by te = 1.1 s, and a migration grid with ∆x= ∆y= ∆z= 20 m.
To avoid spurious events from the spike reflectors, we
regularized the model using a 7×7 median filter.

We represent the results by vertical cuts parallel to the y-
z plane at x = 4.14 km and x = 6.80 km, and parallel to
the x-z plane at y = 4.14 km and y = 10.22 km, as well as
horizontal cuts at depths z = 1.7 m, z = 2.9 km, z = 3.5 km,
and z = 4.1 km. Figures 6 and 7 show these cuts through
the EAGE/SEG salt model after filtering.

Figures 8 and 9 show the corresponding cuts through the
impulse response of FFD migration with two-way splitting,
and Figures 10 and 11 those of FFD migration with
alternating four-way splitting. The differences between
these sets of figures are due to numerical anisotropy,
which is not always easy to see at this scale. The most
visible difference is the one between the top left images of
Figures 9 and 11. The circular shape of three quarters of
the wavefront is well preserved in Figure 11, while visibly
distorted in Figure 9. Similar distortions are present in the
other figure parts. Some events, particularly in the diagonal
directions, are slightly more advanced in Figures 10 and 11
than in Figures 8 and 9. Also, some amplitude differences
are visible. We refrain from presenting the results of
complete four-way splitting, because they look virtually
identical to those in Figures 10 and 11.
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Figure 6: EAGE/SEG salt model. Representation by 4
vertical cuts at x = 4.14 km, x = 6.80 km (top), y= 4.14 km,
and y= 10.22 km (bottom).
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Figure 7: EAGE/SEG salt model. Representation by 4
horizontal cuts at z = 1.7 km, z = 2.9 km, z = 3.5 km, and
z= 4.1 km (from top left to bottom right).
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Figure 8: Impulse response of FFD migration with two-way
splitting. Cuts as above.
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Figure 9: Impulse response of FFD migration with two-way
splitting. Cuts as above.
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Figure 10: Impulse response of FFD migration with
alternating four-way splitting. Cuts as above.
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Figure 11: Impulse response of FFD migration with
alternating four-way splitting. Cuts as above.
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Figure 12: Impulse response of FFDPI migration with two-
way splitting using 10 reference velocities. Cuts as above.
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Figure 13: Impulse response of FFDPI migration with two-
way splitting using 10 reference velocities. Cuts as above.
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For comparison, Figures 12 and 13 show the impulse
response of FFDPI migration with two-way splitting. Since
the theory of Biondi (2002) is only formulated for a single
term of the Padé series, so is our implementation. Because
of the strong dependence of FFDPI on reference velocities
not too far from the true model velocity, this numerical
experiment needed 10 reference velocities. For being a
very robust method, the impulse response is not subject
to any instabilities, even with the reference velocities being
still a bit far from the medium velocities. This remains true
even for less reference velocities, though the image quality
degrades considerably. Because of the need for a rather
large number of reference velocities, FFDPI is a rather
expensive method. In our implementation, it used about
three times the computational time of alternating four-way
FFD.

Even for this experiment with 10 reference velocities, we
still see some effects of numerical dispersion in Figures 12
and 13. Also, the results still exhibit quite visible differences
to Figures 10 and 11. Since we have at this time
no 3D reverse-time migration available, it is hard to tell
which results are better positioned. Visual inspection and
comparison to results of FD migration (not shown here)
make us believe that the FFD results are more reliable
than the FFDPI results with 10 reference velocities. More
accurate results can be obtained by further increasing the
number of reference velocities.

Conclusions

In this paper, we have implemented 3D versions of complex
Padé Fourier Finite-Difference (CPFFD) and Fourier Finite-
Difference plus interpolation (FFDPI) migrations, which
have proven to be more stable in the presence of
strong lateral velocity contrasts than other FFD migration
implementations. For CPFFD migration, we have
compared the effects of different ways of directional
splitting and compared its results to those of FFDPI
migration. Alternating four-way splitting, i.e., applying the
differential operators in the coordinate directions at one
depth level and in the diagonal directions at the next depth
level, proved to be an improvement over conventional two-
way splitting at almost no extra cost. The results were
comparable to complete four-way splitting, i.e., all four
directions applied at all depth levels. Extensions of the
alternating splitting technique can be thought of like eight-
way splitting where the remaining directions are covered
two by two in the next two depth steps.

From our numerical tests with splitting the CPFFD and
FFDPI migration operators, we conclude that FFDPI
migration is the most robust of the tested methods.
Even implemented only using two-way splitting, it did
show only a fair amount of numerical dispersion, but no
visible numerical anisotropy. However, in our numerical
experiments, the numerical dispersion increased with the
difference between the model and reference velocities.
Thus, for practical use, FFDPI is a rather expensive method
because it needs a large number of reference velocities to
function with acceptable precision. For a more economic
migration with acceptable image quality, alternating four-
way splitting in FFD migration is an interesting alternative.

One minor problem of multi-way splitting should be
mentioned. The differential operator in the diagonal
directions can cause aliasing effects because of the fact

that the grid spacing in this direction is by a factor of√
2 larger than in the coordinate directions. Off-diagonal

directions may complicate things further, because they
require resampling.
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