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Abstract

Time-migration velocity analysis can be carried
out automatically by evaluating the coherence of
the migrated seismic events in the common-image
gathers (CIGs). The performance of gradient methods
for automatic time-migration velocity analysis depends
on the the coherence measures used in the objective
function. We compare the results of four different
coherence measures, being conventional semblance,
differential semblance, an extended differential
semblance using more neighboring traces, and the
product of the latter with conventional semblance. In
our numerical experiments, the objective functions
based on conventional semblance and on the product
of conventional semblance with extended differential
semblance provided the best velocity models, as
evaluated by the flatness of the resulting common-
image gathers. The method can be easily extended to
anisotropic media.

Introduction

Kirchhoff time migration aims at focusing seismic events at
an image point by stacking the data along a analytically
speficied diffraction-traveltime surface. This surface
represents the traveltime of a diffraction at the image point.
The choice of an analytic representation of the stacking
surface restricts the applicability of Kirchhoff time migration
to media with moderate velocity variations at the scale of
the aquisition geometry.

Time migration describes the full complexity of the
traveltimes of wave propagation between an image
point and the earth’s surface by a relatively small
number of parameters at each image point. The
parameter set attributed to each image point defines an
effective medium that determines the respective diffraction-
traveltime surface, strictly valid at this image point only.

Time migration velocity analysis consist of estimating this
set of parameters at each image point. Inspite of is obvious
intrinsic contradictions this process has a number of
advantages, the most important ones being its algorithmic
simplicity, low computational cost, and high robustness in
comparison to the construction of a depth migration velocity
model.

Because of the underlying assumption of a smoothly
varying velocity, the resulting parameter sets are also

supposed to vary smoothly. Thus, they can be represented
by smooth interpolators such as, e.g., B-splines. The grid
spacing between adjacent nodes can be of the order of
the length of the seismic line, which greatly reduces the
dimension of the parameter space.

Simplicity and robustness of time migration justify its use
in the standard processing sequence of most seismic data.
Even when the time migrated image is not convenient for
structural interpretation, the so-constructed time-migration
velocity model can still be used for the construction of
an initial depth velocity model by means of time-to-depth
conversion. This initial depth velocity model can then
later be refined using more sophisticated depth migration-
velocity analysis techniques like tomographic methods
(Billette et al., 2003).

Recently, we have studied different methods of obtaining
an initial model for time time migration (Schleicher et al.,
2008; Schleicher and Costa, 2009). Now, we are interested
in how to refine such an initial model. An efficient
criterion to improve a time-migration velocity model is to
require that migrated images of the same image point as
obtained, e.g., from migration of neighbouring common-
offset sections, must exhibit a certain degree of similarity.
A common method to evaluate this similarity is the use of
common-image gathers (CIGs), where all migrated traces
that correspond to the same horizontal position in the
image space are displayed next to each other. If the
model parametrization is consistent with the data, the
corresponding events must align horizontally in a CIG
(Faye and Jeannot, 1986; Zhu et al., 1998). This criterion
can be automatically applied by evaluating the coherence
along horizontal lines through the CIG (Sattlegger, 1975;
Abbad et al., 2009).

In this work, we investigate different implementations of
time-migration velocity analysis that use the optimization
of different types of coherence measures in the CIGs.
In our numerical test, we use conventional semblance
(Neidell and Taner, 1971), differential semblance (Symes
and Carazzone, 1991), and two new coherence measures
using more neighboring traces.

Coherence measures for time-migration velocity
analysis

Migration velocity analysis by means of the minimization
of differential semblance (Symes and Carazzone, 1991)
was proposed by Chauris and Noble (2001), since this is
frequently considered the most robust of the conventional
coherence measures. To solve this optimization problem,
the adjoint-state method (Mulder and ten Kroode, 2002;
Plessix, 2006) is very convenient to analytically calculate
the gradient of the objective function. We start from the
general migration-velocity-analysis functional for 2D or 3D
time or depth migration using differential semblance as
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proposed by Mulder and ten Kroode (2002),

Minimize J[η(x)] =
1

2

∫

dx
DΛ(x)

Λ(x)
(1)

subject to I(x,h) =
∫

dx F(x−x
′)M(x,h,η) ,

where

DΛ(x)≡
∫

dz

∫

dh

[

∫

dζ S(h−ζ )
∂

∂ζ
(Γ(x,ζ )I(x,ζ ))

]2

,

(2)

Λ(x)≡
∫

dz

∫

dh

[

∫

dζ S(h−ζ )(Γ(x,ζ )I(x,ζ ))

]2

, (3)

and

M(x,h,η)≡
∫

dξ W (ξ ,h,x′;η)D [ξ ,h, t = τD(ξ ,h,x
′
;η)] .

(4)
Here, x= (x,z) denotes the image point, with x representing
one (2D) or two (3D) horizontal coordinates and z

representing depth or vertical time. Also, η(x) represents
the parameter set that describes the diffraction-traveltime
surface at image point x, and I(x,h) is the migrated section
M(x,h,η) at x for half-offset h, possibly filtered by a spatial
filter F , e.g., a mask to pass only selected regions to the
migration-velocity analysis, or some smoothing operator.
Moreover, Γ(x,h) represents the muting operator applied
to the CIGs, S(h) is a smoothing operator, D(ξ ,h, t)
represents a single common-offset section with ξ being
the CMP coordinate. Finally, W indicates a weight function
for the migration operator, which includes a frequency filter
(derivative in 3D, half-derivative in 2D), and τD represents
the diffraction-traveltime surface.

Gradient computation unsing the adjoint-state method

The augmented Lagrangian associated with problem (1) is
easily seen to be given by

L (I,η,λ ) =
1

2

∫

dx
DΛ(x)

Λ(x)
+

∫

dx

∫

dh λ (x,h)×

×

{

I(x,h)−
∫

dx′ F(x−x
′)M(x,h,η)

}

, (5)

where λ (x,h) are Lagrangian multipliers. Moreover, to
simplify the notation in the derivation of the functional’s
gradient below, we have introduced the symbols

For our gradient, we need to calculate the variation of the
Lagrangian functional (5) with respect to I, η e λ . After
conveniently choosing the Lagrangian multipliers as

λ (x,h) =Γ(x,h)

{

1

Λ(x)

∫

dβ
∂

∂h
S(h−β ) ×

×

[

∫

dζS(ζ −β )
∂

∂ζ
(Γ(x,ζ )I(x,ζ ))

]

(6)

+
DΛ(x)

Λ(x)2

∫

dβS(h−β )

[

∫

dζS(ζ −β )Γ(x,ζ )I(x,ζ )

]}

,

and also using that

I(x,h) =
∫

dx′ F(x−x
′)M(x,h,η) , (7)

the variation of the Lagrangian functional (5) with respect
to I, η e λ can be represented as

δL =−

∫

dx δη ·∇η

{

∫

dh

∫

dx′λ (x′,h)F(x′−x)M(x,h,η)

}

,

(8)
where λ (x′,h) is now given by equation (6). More
explicitely, the variation to be calculated is

δL =−

N

∑
j=1

∫

dx δη j

{

∫

dh

∫

dx′λ (x′,h)F(x′−x)
∂M(x,h,η)

∂η j

}

,

(9)
where N represents the number of parameters η j

characterizing the diffraction-traveltime surface.

In the derivative of the migrated image M(x,h,η) with
respect to the traveltime parameters η , the derivative of
the weight function is of a lower order in frequency than the
derivative of the phase term and can, thus, be neglected
(Mulder and ten Kroode, 2002), i.e.,

∂M(x,h,η)

∂η j
≈

∫

dξW (ξ ,h,x;η)D ′[ξ ,h, t = τD(ξ ,h,x;η)]
∂τD
∂η j

.

(10)
This yields the final expression for the gradient of the
objetive function as

δL =−

N

∑
j=1

∫

dx δη j S j(x), (11)

where

S j(x) =
∫

dh

∫

dx′ λ (x′,h)F(x′−x)×

×

∫

dξ W (ξ ,h,x;η)D ′[ξ ,h, t = τD(ξ ,h,x;η)]
∂τD
∂η j

.

(12)

In other words, the dependence of the objective function
on the medium parameters is essentially contained in
the derivative ∂τD/∂η j. Note that this derivation is valid
for general medium representations, independently of the
actual type and number of parameters η . In particular,
it can be applied in anisotropic media once a suitable
traveltime parameterization is available.

Implementational aspects

The implementation of an algorithm of time-migration
velocity analysis based on the above discussion requires a
spatial representation of the velocity model. If we assume
that the model parameters are represented by B-splines of
the form

η j(x) = ∑
I

∑
J

η IJ
j BI(x1)BJ(x3) , (13)

we can represent the gradient δL as

δL =−

N

∑
j=1

∑
I

∑
J

δη IJ
j

∫

dx BI(x1)BJ(x3)S j(x). (14)

In other words, in terms of the B-splines coefficients, we
can conclude that

∂L

∂η IJ
j

=
∂J

∂η IJ
j

=−

∫

dx BI(x1)BJ(x3)S j(x). (15)
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Moreover, from the point of view of computational
efficiency, it is important to observe that the derivative of
the migrated image M(x,h,η) with respect to the medium
parameters η , given by equation (10), is easily calculated
during the migration process. It represents a second sum
with a slighlty modified weight factor, adding only a very
small extra cost to the migration procedure.

The computation of the gradient is thus given simply
by projecting the product of the two images, λ (x,h) e
∂M(x,h,η)/∂η j, into the B-splines bases that represent
the model. The main cost of the gradient evaluation
is contained in the computation of the expression within
brackets (Mulder and ten Kroode, 2002). To evaluate this
expression, two groups of image gathers are needed, being
conventional CIGs and corresponding CIGs associated
with ∂M(x,h,η)/∂η j. In this way, the overall cost of the
methods is approximately twice the cost of a simple pre-
stack time migration.

The gradient ∂J/∂η IJ
j can be used in optimization methods

like conjugate-gradient or quasi-Newton methods, to
update the velocity model and minimize the differential
semblance in the CIGs. In this way, a given initial model as
obtained from, for instance, conventional velocity analysis,
can be refined into a better time-migration velocity model.

Time migration in isotropic media

To apply the algoritm to 3D time-migration velocity analysis
in isotropic media, let now the image point be explicitely
denoted by x≡ (x,y,τ), where (x,y) denote the coordinates
of the projetion of the image point into the earth’s surface,
and where τ is the traveltime along the image ray to
the image point. Also, we approximate the diffraction-
traveltime surface by

τD(ξ ,h,x) = ts+ tr (16)

=

√

(ξx−hx− x)2+(ξy−hy− y)2

c2(x,y,τ)
+ τ2

+

√

(ξx+hx− x)2+(ξy+hy− y)2

c2(x,y,τ)
+ τ2 , (17)

where c(x,y,τ) represents the time migration velocity.
Since this is the only medium parameter describing the
diffraction-traveltime surface, the parameter derivatives
reduce to

∂τD(ξ ,h,x)

∂c
=−

1

c

{

ts

[

1−

(

τ

ts

)2
]

+ tr

[

1−

(

τ

tr

)2
]}

.

(18)

To correct for the geometrical spreading factor during
migration, we choose the weight function as proposed by
Peles et al. (2001), i.e.,

W (ξ ,h,x) =
1

2
cτ

(

ts

tr
+

tr

ts

)
√

1

ts
+

1

tr
. (19)

Alternatively, one can use no weight function (i.e., no
spreading compensation) during migration. Then, some
geometrical-spreading correction needs to be applied after
migration, before the velocity analysis.

Alternative objective functions

A point of criticism to differential semblance as an
annihilator to measure the absence of moveout of events

in a CIGs relates to its rather local character (Abbad et al.,
2009). Differential semblance can result in small values
even if the event still exhibits some residual moveout,
particularly for aquisitions with a large offset variation.
This feature of differential semblance is a disadvantage
for velocity analysis, particularly for anisotropic media.
Abbad et al. (2009) propose an alternative objective
function that has the disadvantage of not being analytically
differentiable. To extend the active region of the annihilator
and avoid this problem, we test the performance of
the method using four different coherence measures,
being conventional semblance (Neidell and Taner, 1971),
differential semblance (Symes and Carazzone, 1991), a
new extended differential semblance based on extended
images, as well as the product of the latter with
conventional semblance. In symbols,

J1[η(x)] =
1

2

∫

dx S (x) , (20)

J2[η(x)] = =
1

2

∫

dx E (x) , (21)

J3[η(x)] =
1

2

∫

dx S (x) E (x) , (22)

where

S (x) = 1−

∫

dz
[

∫ H
0 dhI (x,h)

]2

H
∫

dz
∫ H
0 dhI 2(x,h)

(23)

and

E (x) =

∫

dz
∫ L
0 dγW (γ)

∫ H−γ
γ dhWh(h) [∆I (x,h,γ)]2

∫

dz
∫

dhI 2(x,h)
. (24)

In other words, J1 is based on conventional semblance
S (x), J2 uses an extended version E (x) of the differential
semblance, and J3 uses the product of the latter two
coherence measures. In the above functionals, I (x,h) is a
smoothed version of the migrated image, represented as

I (x,h) =
∫

dζSz(z−ζ )
∫ H

0

dσSh(h−σ)Γ(x,ζ ,σ)I(x,ζ ,σ) ,

(25)
with I(x,z,h) = I(x,h) given by the second line of problem
(1). Moreover, equations (20) and (21) make use of
extended images given by

∆I (x,h,γ) = I (x,h+ γ)−I (x,h− γ) . (26)

The objective functions (21) and (22) using the extended
differential semblance E (x) retain the desirable properties
of differential semblance, but extend the domain of the
annihilator.

To use the new functionals in an optimization method,
we need their gradients. Since the derivations are rather
similar, we refrain from stating them here.

Numerical Examples

We have applied the above technique of velocity model
refinement to the Marmousoft data (Billette et al., 2003).
These data were constructed by Born modeling in a
smoothed version of the Marmousi model (Versteeg and
Grau, 1990). The true Marmousoft velocity model is
depicted in Figure 1.
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Figure 1: Marmousoft velocity model.

As detailed above, we chose to represent the velocity
model by B-splines, using a grid with 15× 31 nodes, with
grid spacing intervals of 0.1 s in vertical time and 250 m
in the horizontal direction. The starting model was a
homogeneous model with a constant velocity of 1500 m/s.
In all tests, we applied the moving-average smoothing five
times along the vertical and offset axes. For the extended
differential semblance, we chose a window length of four
traces.

To estimate the B-splines coefficients, we employed an
implementation of the conjugate-gradient method (Byrd
et al., 1993, 1995; Zhu et al., 1994, 1997), with at most
100 evaluations of the objective function and a maximum
40 iterations. The convergence criterion was a precision
tolerance of 10−10.

Velocity results

Figure 2 shows the resulting velocity models using the
four tested functionals. We observe that the main general
features are correctly recovered by all four objective
functions. The functionals using differential semblance
and the product of extended differential semblance times
conventional semblance yield the most detailed models.
Since the original Marmousoft model of Figure 1 is in depth,
it is hard to judge which of the time-migration models of
Figure 2 is actually the best one.

Image gathers

The best test for a time-migration model is, of course, a
time migration. Figures 3 to 6 show selected common-
image gathers after time migration using the four different
velocity models of Figure 2. The CIGs corresponding
to the objective functions using semblance (model in
Figure 2a), differential semblance (model in Figure 2b),
extended differential semblance (model in Figure 2c), and
extended differential semblance times semblance (model in
Figure 2d), are depicted in Figures 3 to 6, respectively. We
see that the general aspect of all CIGs is that most events
are reasonably flat. Independently of the objective function,
the central region between CIG 6000 and CIG 7500
presents the most difficulties. This problem should be
attributed to the general limitations of time migration in
geologically complex areas rather than taking it as an
indication of a poor velocity model. Visual inspection
seems to indicate that the best flattening is achieved by
the semblance (Figure 3) and product (Figure 6) objective
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Figure 2: Velocity models obtained from a constant
starting model using a conjugate gradient method with the
objective functions as detailed in the text. (a) Semblance;
(b) Differential Semblance; (c) Extended Differential
Semblance; (d) Extended Differential Semblance ×

Semblance.

functions.

For a more quantitative analysis, we have compiled Table 1.
It shows the mean values of all four objective functions
after otimization of each of them. We see that minimum
semblance objective function is obtained when miminizing
itself. On the other hand, all other three objective functions
are minimized when minimizing the product objective
function. This results confirms in a more quantitative
manner what our visual inspection of the CIGs already
indicated, namely that the resulting velocity models of the
semblance and product objective functions produce the

Twelfth International Congress of The Brazilian Geophysical Society



MACIEL, COSTA, SCHLEICHER 5

0

0.2

0.4

0.6

0.8

1.0

1.2

T
e
m

p
o
�[
s]

2000
Afastamento�[m]

CIG 4000

0

0.2

0.4

0.6

0.8

1.0

1.2

T
e
m

p
o
�[
s]

2000
Afastamento�[m]

CIG 5000

0

0.2

0.4

0.6

0.8

1.0

1.2

T
e
m

p
o
�[
s]

2000
Afastamento�[m]

CIG 6000

0

0.2

0.4

0.6

0.8

1.0

1.2

T
e
m

p
o
�[
s]

2000
Afastamento�[m]

CIG 6500

(a) (b) (c) (d)

0

0.2

0.4

0.6

0.8

1.0

1.2

T
e
m

p
o
�[
s]

2000
Afastamento�[m]

CIG 7000

0

0.2

0.4

0.6

0.8

1.0

1.2

T
e
m

p
o
�[
s]

2000
Afastamento�[m]

CIG 7500

0

0.2

0.4

0.6

0.8

1.0

1.2

T
e
m

p
o
�[
s]

2000
Afastamento�[m]

CIG 8000

0

0.2

0.4

0.6

0.8

1.0

1.2

T
e
m

p
o
�[
s]

2000
Afastamento�[m]

CIG 8500

(e) (f) (g) (h)

Figure 3: Selected CIGs along the Marmousoft model
after automatic time migration velocity analysis using the
semblance objective function.
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Figure 4: Selected CIGs along the Marmousoft model
after automatic time migration velocity analysis using the
differential semblance objective function.

best flattened image gathers.

Conclusions

Time-migration velocity analysis can be carried out
automatically by evaluating the coherence of the migrated
seismic events in the common-image gathers (CIGs).
In this work, we have studied the performance of
an adjoint-state implementation of a conjugate-gradient
method for automatic time-migration velocity analysis using
four objective functions based on different coherence
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Figure 5: Selected CIGs along the Marmousoft model
after automatic time migration velocity analysis using the
extended differential objective function.
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Figure 6: Selected CIGs along the Marmousoft model
after automatic time migration velocity analysis using
the product objective function of extended differential
semblance times semblance.

measures. The four coherence measures tested
are conventional semblance, differential semblance, an
extended differential semblance using extended images,
and the product of the latter with conventional semblance.
In our numerical experiments, the objective functions
based on conventional semblance and on the product
of conventional semblance with extended differential
semblance provided the best velocity models, as evaluated
by the flatness of the resulting common-image gathers.
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Objective function values

Optimized
objective
function

Sembl Diff
Sembl

Ext Diff
Sembl

Ext Diff
Sembl×
Sembl

Sembl 0.0602710 25.83693 2.829875 1.425242

D Sembl 0.0894132 26.01136 2.659655 1.346235

E D S 0.0648145 34.74438 4.180604 2.116063

E D S × S 0.1037669 24.07932 2.617682 1.307488

Table 1: Values of the objective functions after migration
velocity analysis. Left column: Optimized objective
function. Other columns: Resulting values of all objective
functions.

The present approach to time-migration velocity analysis
can be extended to arbitrary anisotropic media. Although
analytic expression to the describe the diffraction-traveltime
surfaces are no longer available for the more general
cases of anisotropy, the numerical evaluation of these
surfaces is still simple and computationally efficient. An
example for nonhyperbolic velocity analysis was given by
Abbad et al. (2009). For VTI media, analytic approximate
traveltime representations are available in the literature
(see, e.g., Alkhalifah and Tsvankin, 1995; Fomel, 2004).
Aleixo and Schleicher (2010) presented hightly accurate
two-parameter traveltime approximations for VTI media.
Therefore, an extension of the ideas presented in this work
to VTI media is straightforward.
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