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Abstract

This is a relatively simple galvanic current flow
boundary value problem to demonstrate that the
Finite Difference Frequency Domain method can
accurately model current flow through a bed boundary.
The method uses non-uniform grids to be able to
model rapidly changing fields. The formulation uses
secondary potentials to remove singular problems
with primary fields.

Introduction

The representation of fields and waves in physical
problems is usually done by partial differential equations.
A solution is found when the field or wave, governed by
the partial differential equation, satisfies the particular set
of boundary conditions which are chosen according to the
given physical situation.

In most of geophysical problems, due the complex
geometry of the boundary value problem, it is impossible to
obtain an analytical solution, so we need to use numerical
procedures to obtain approximate solutions. The most
commonly used techiques to accomplish these numerical
tasks are the finite difference (FD) and finite element
(FE) method (Schenkel, 1991). Both methods require a
complete gridding of the solution domain, which must be
fine enough to track the features of interest, usually the
inhomogeneities.

Here we use the finite difference frequency domain
method to model a Schlumberger resistivity sounding in an
environment involving two infinite half spaces. The non-
uniform grid is refined in the interface between the two
media, where we have a rapidly variation of the electrical
field.

The Schlumberger array consists of two source electrodes
that are inserted into the ground providing a flow of
current through the earth from one electrode to the
other and two receiver electrodes located betweeen the
source electrodes, to measure the voltage difference. The
flow lines are always perpendicular to the equipotentials
surfaces, so in our case, where we have the media
interface parallel and next to the line of electrodes, the

current flows through the interface.

This work is an initial example to test some issues needed
in future problems. Our goal is to assess electromagnetic
problems in more complex 2 1/2-D and 3-D environments,
like marine oil soundings, with irregular seabed and/or
anisotropy. For these problems, the matrices that arise
from the use of finite difference method become large,
requiring significant computational power. Non-uniform
grids and exploitation of the sparse property of the finite
difference matrix are example options to circumvent this
problem.

Further, the use of gradient methods to solve the system
of equation is tested here. We started using the conjugate
gradient method (CG) that takes advantage of the complex
symmetry of the FD matrices of this problem to make
the calculations faster. But when handling anisotropy
and bathymetry, which are our next steps, this complex
symmetry is lost, requiring the biconjugate gradient method
(BiCG), which does’t require this symmetry but is slower
than CG.

Matrix preconditioning can improve the search for the
solution, but it can also destroy the complex symmetry
of the matrices and this is another reason for the use of
BiCG. There is much literature and research on matrix
preconditioning and iterative methods, for example: Chen
(2005), Barret et al. (1994), Greenbaum (1997) and Saad
(1996).

Planned extensions are the use of more general BiCG
methods that allow the implementation of LU incomplete
preconditioning to significantly reduce the number of
iterations per wave number.

Method

In an isotropic medium, current density J and electric field
intensity E are related by Ohm’s Law:

J=o0E (1)

where o is the conductivity (=1/resistivity).

The electric field is equal to the gradient of the electrical
potential ®:

E=-Vd )

From the principle of conservartion of charge, we also
have:
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V.J=—906(x)6(ys)0(zs) 3)

where .7 is the electric current and x;,y; and z; are the
cartesian coordinates of the point source (Wait, 1982).
Thus, the above equation holds everywhere except at the
source itself.

Combining equations (1),(2) and (3), we obtain:

_V[G(xvyvz)vq)(xvyvz)] = ja(xs)a(ys)s(zx) (4)

This Poisson’s equation is solved for ®. The difference in
@ at two different points is equal to the potential difference
in volts.

In our problem, the conductivity varies only in z direction
but ® and .# are x,y,z dependent. In such situations,
the solution for ® is solved more easily in the Fourier
transformed space (x,ky,z) using the equation:

oo .
Fxhy,2)= [ flxy.2)e dy ()

Applying the Fourier transform in equation (4) produces:

—V,[o(2)V L P(x,ky,2)] fkgo(z)fb(x,ky,z) = ﬂ(‘i(xs)ﬁ(zs()s)

where V| = %H %IQ.

Using the formulation for the secondary potential, where:

O =P+ P°
c=o0"+Ac

We obtain

~V [6(z)V @] k0 ()®* =V | [AcV | OF| — kI AcD.
' @)

Because of the first derivative of the scalar potential ® on
the left size of the above equation, the resulting matrix
will not be complex symmetric as necessary for conjugate
gradient solutions. As pointed out by Allers et al.(1994),
Stefanescu’s transform changes the electrostatic current
flow potential equation to complex symmetric form . This
motivates defining a new scalar potential V (x) as

D =V(x)/a(x) (8)
where
a(x) = (o))"

Substitution of transformation (8) into equation (7) gives,
upon simplification

2 _ 2 12 2
o o o

which is the equation to be used with finite difference.

Data examples

To validate the code, we compare the numerical solution
with its equivalent analytical. For completeness, the point
electrode potential is represented by

B2
0= 7>
47> 0y .

oo 4
L  Kolkyp)eldky (10)

where oy is the conductivity of the source medium and p =

Vv x2+y? and K, is the modified Bessel function of second
kind.

For the inhomogeneous medium, we have:

Do+ D at the source medium;
b= .
D, otherwise

where

+oo A
O, — k / s (k) o (kyp )€™ dky

—oo

oo ,
O, =k / ar (ky) Ko (kyp )€™ dky
and where

" 4nlcy

e RYKoK (11— 1)

(k) =
astb) = = B K

eiik,\‘y

ky) = ——F—————~
at( )) kth(IlK() +2,]0K1)

In these expressions I, is the modified Bessel function of
first kind, A = o1/0p, where o, is the conductivity of the
medium without the source and z is the z coordinate of the
source (Wait,1982).

The potentials were calculated in a non-uniform grid, which
has greater refinement around the coordinate z = 0. Thus,
for a z < 0 we have the medium conductive of oy = 0.1 S/m
and for z > 0 we have the medium conductive of 6; = 1.5/m.
The distance of the electrode sources to the bed interface
isz; = —28.5m.
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Figure 1: Comparison between the numerical (dashed) and
analytical (solid) results.

Figure 1 compares the results obtained with the numerical
and analytical procedures. The two graphics on top show
the real and imaginary parts of the secondary potential.
We can note a good match in the central region of the two
solutions, that can be better verified in the two graphics on
bottom. The latter two graphics show the absolute value of
the secondary potential and the relative error between the
analytical and numerical solutions.

The imaginary part of the solution is very small, as
expected, and can be ignored. Notice that the numerical
solution gets worse near the edges. It occurs because
the finite difference method is less accurate in this region.
The last graphic confirms that the numerical and analytical
solution are very close, diverging at the edges.

In the example above, we used the conjugate gradient
method to solve the system of equation with Jacobi
preconditioner, which takes only the main diagonal of the
matrix to be solved and multiplies it by this matrix. But,
we have tested the biconjugate gradient method with a
LU incomplete preconditioner and we noticed a significant
reduction of iterations per wave number. This reduction
was even lower when we decreased the drop tolerance of
the LU incomplete preconditioner.

Summary and Conclusions

This paper shows the modelling of a direct current flow
using a Schlumberger array in a medium consisting of
two half spaces with different conductivities. The electric
source is in one medium and next to the interface with the
another one, so that there is current flowing between the
media. We solved second order differential equations using
finite difference and we showed that the method could deal
with this current through the media interface. We noticed
that the method is less efficient near the boundaries, but
this isn’'t an issue actually, because we used a grid large
enough for the decay of the electric field so we don’t need

to concern with reflection distortions near the boundaries.
BiCG algorithms do not require specific sparse matrix
symmetry. Thus we can use LU incomplete preconditioning
to improve convergence. The number of iterations per wave
number is then significantly decreased.
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